Doctoral Student
Yoshiki is a former doctoral student who came to Geneva from Keio University in Japan where he had studied with Prof. Daniel Citterio. He is broadly interested in exploring new sensing principles and materials and testing them especially in clinical settings. Most of his work has been on optical sensing principles and aiming to make digital photography quantifiable for sensing. His research is playful and focused at the same time and his broad interest and open mind made his doctoral work very fruitful. After his doctoral studies he was offered a postdoctoral position to join the group of Justin Gooding at UNSW in Australia.
Publications:
(1)   Portable Instrument and Current Polarization Limitations of High Sensitivity Constant-Potential Capacitive Readout with Polymeric Ion-Selective Membranes, Kraikaew, P.; Soda, Y.; Nussbaum, R.; Jeanneret, S.; Bakker, E. Sens. Actuators, B, 2023, 379, 133220. DOI: 10.1016/j.snb.2022.133220 (open access).
(2)   Mass Transfer from Ion Sensing Component-Loaded Nanoemulsions into Ion-Selective Membranes: An Electrochemical Quartz Crystal Microbalance and Thin Film Coulometry Study, Mao, C.; Soda, Y.; Robinson, K. J.; Forrest, T.; Bakker, E. ACS Measurement Science Au, 2023, 3, 45–52. DOI: 10.1021/acsmeasuresciau.2c00053 (open access).
(3)   Optical Detection of Heparin in Whole Blood Samples using Nanosensors Embedded in an Agarose Hydrogel, Nussbaum, R.; Robinson, K. J.; Soda, Y.; Bakker, E. ACS Sensors, 2022, 7, 3956–3962. DOI: 10.1021/acssensors.2c02154.
(4)   Response Mechanism of Hyperpolarization-based Polyion Nanosensors, Soda, Y.; Robinson, K. J.; Bakker, E. ACS Sensors, 2022, 7, 3108–3115. DOI: 10.1021/acssensors.2c01599.
(5)   Chemo and Regioselective Multiple C(sp2)−H Insertions of Malonate Metal Carbenes for Late-Stage Functionalizations of Azahelicenes, Nikolova, Y.; Fabri, B; Lorente, P. M. ; Guarnieri-Ibáñez, A.; de Aguirre, A.; Soda, Y.; Zinna, F.; Besnard, C.; Guénée, L.; di Bari, L.; Bakker, E.; Poblador-Bahamonde, A. I.; Lacour, J. Angew. Chem. Int. Ed., in press. DOI: 10.1002/anie.202210798
(6)   Hyperpolarized Solvatochromic Nanosensors towards Heparin Sensing in Blood, Nussbaum, R.; Robinson, K. J.; Soda, Y.; Bakker, E. Chimia, 2022, 76, 284-287. DOI: 10.2533/chimia.2022.284 (open access).
(7)   Recent improvements to the selectivity of extraction-based optical ion sensors , Robinson, K. J.; Soda, Y.; Bakker, E. Chem. Commun., 2022, 58, 4279-4287. DOI: 10.1039/d1cc06636f (open access).
(8)   Protamine/Heparin Optical Nanosensor based on Solvatochromism, Soda, Y.; Robinson, K.; Nussbaum, R.; Bakker, E. Chem. Sci, 2021, 12, 15596-15602. DOI: 10.1039/D1SC04930E (open access).
(9)   Ionic Strength-Independent Potentiometric Cation Concentration Sensing on Paper Using a Tetrabutylammonium-based Reference Electrode, Soda, Y.; Bakker, E. Sens. Actuators, B, 2021, 346, 130527. DOI: 10.1016/j.snb.2021.130527 (open access).
(10)   Colorimetric ratiometry with ion optodes for spatially resolved concentration analysis, Soda, Y.; Bakker, E. Anal. Chim. Acta, 2021, 1154, 338225. DOI: 10.1016/j.aca.2021.338225 (open access).
(11)   Emulsion Doping of Ionophores and Ion-Exchangers into Ion-Selective Electrode Membranes, Soda, Y.; Gao, W.; Bosset, J.; Bakker, E. Anal. Chem., 2020, 92, 14319–14324. DOI: 10.1021/acs.analchem.0c02920 (open access).
(12)   Colorimetric Absorbance Mapping and Quantitation on Paper-Based Analytical Devices, Soda, Y.; Robinson, K. J.; Cherubini, T.; Bakker, E. Lab on a Chip, 2020, 20, 1441-1448 . DOI: 10.1039/D0LC00028K (open access).
(13)   Optical Sensing with a Potentiometric Sensing Array by Prussian Blue Film Integrated Closed Bipolar Electrodes, Jansod, S.; Cherubini, T.; Soda, Y.; Bakker, E. Anal. Chem., 2020, 92, 9138–9145. DOI: 10.1021/acs.analchem.0c01421 (open access).
(14)   Ultra-Sensitive Seawater pH Measurement by Capacitive Readout of Potentiometric Sensors, Kraikaew, P.; Jeanneret, S.; Soda, Y.; Cherubinini, T.; Bakker, E. ACS Sensors, 2020, 5, 650-654. DOI: 10.1021/acssensors.0c00031 (open access).
(15)   Quantification of Colorimetric Data for Paper-Based Analytical Devices, Soda, Y.; Bakker, E. ACS Sensors, 2020, 4, 3093-3101. DOI: 10.1021/acssensors.9b01802 (open access).
(16)   Equipment-Free Detection of K+ on Paper, Soda, Y.; Citterio, D.; Bakker, E. Chimia, 2019, 73, 944. DOI: 10.2533/chimia.2019.944 (open access).
(17)   Equipment-Free Detection of K+ on Microfluidic Paper-based Analytical Devices Based on Exhaustive Replacement with Ionic Dye in Ion-selective Capillary Sensors, Soda, Y.; Citterio, D.; Bakker, E. ACS Sensors, 2019, 4, 670-677. DOI: 10.1021/acssensors.8b01521 (open access).