2024 Publications:
(427)   Complexation Behavior and Clinical Assessment of Isomeric Calcium Ionophores of ETH 1001 in Polymeric Ion-Selective Membranes, Zhang, Y.; Zhou, J.; Yang, T.; Huang, Z.; Mattos, G.; Tiuftiakov, N.; Wu, Y.; Gao, J.; Qin, Y.; Bakker, E., submitted.
(426)   Towards Mass-Production of Ion-selective Electrodes by Spotting: Optimization of Membrane Composition and Real-Time Tracking of Membrane Drying, Krivacic, S.; Speck, A.; Kassal, P.; Bakker, E., submitted.
(425)   Self-Powered Potentiometric Sensor with Relational Operation Function to Capture Concentration Excursions, Wu, Y.; Zhang, Y.; Qileng, A.; Bakker, E. Anal. Chem., in revision.
(423)   Improving the Sensitivity of pH Glass Electrodes Towards Ultrasensitive Environmental Monitoring, Nussbaum, R.; Bakker, E. Chimia, 2024, 78, 445. DOI: 10.2533/chimia.2024.445 (open access).
(422)   High Sensitivity Constant Potential Coulometry at Zero Current with pH Glass Electrodes, Nussbaum, R.; Jeanneret, S.; Bakker, E. Anal. Chem., 2024, 96, 6436–6443. DOI: 10.1021/acs.analchem.4c00592 (open access).
(421)   Ion-Exchange and Lipophilicity Limitations of Ionic Liquid Reference Electrodes, Tiuftiakov, N. Y.; Zdrachek, E.; Bakker, E. Sens. Actuators, B, 2024, 407, 135474. DOI: 10.1016/j.snb.2024.135474 (open access).
(420)   Conference Report: Euroanalysis 2023 in Geneva, Bakker, E.; Hattendorf, B.; Kalman, F.; Suter, M. Chimia, 2024, 78, 69. DOI: 10.2533/chimia.2024.69 (open access).
(419)   Ion transfer mediated by TEMPO in ionophore-doped thin films for multi-ion sensing by cyclic voltammetry, Mattos, G. J.; Rothen, J. A.; Tiuftiakov, N. Y.; Bakker, E. Anal. Chim. Acta, 2024, , 342388. DOI: 10.1016/j.aca.2024.342388 (open access).
(416)   Avoiding Potential Pitfalls in Designing Wired Glucose Biosensors, Damala, P.; Tiuftiakov, N. Y.; Bakker, E. ACS Sensors, 2024, 9, 2-8. DOI: 10.1021/acssensors.3c01960.
(415)   In situ Derivatization of Solid Contact 3,4-Ethylenedioxythiophene Transducers for Ion-Selective Electrodes through “Click” Chemistry, Forrest, T.; Bakker, E. Sens. Actuators, B, 2024, 405, 135339. DOI: 10.1016/j.snb.2024.135339 (open access).
2023 Publications:
(417)   Remembering Otto Wolfbeis (1947–2023), Bakker, E. ACS Sensors, 2023, 8, 3605. DOI: 10.1021/acssensors.3c02085 (open access).
(414)   Self-powered Potentiometric Sensor with Electronic Paper Display Based on Passive Amplification by Serial Capacitors, Qileng, A.; Wu, Y.; Liu, Y.; Bakker, E. Anal. Chem., 2023, 95, 17444–17449. DOI: 10.1021/acs.analchem.3c04323.(413)   Lipophilic tetramethylpiperidine N-oxyl (TEMPO) as a redox probe in thin films for anion and cation sensing by ion transfer voltammetry, Mattos, G. J.; Tiuftiakov, N. Y.; Bakker, E. Electrochem. Commun., 2023, 157, 107603. DOI: 10.1016/j.elecom.2023.107603 (open access).
(412)   Distance-Based Self-Powered Signal Transduction of Ion-Selective Electrodes to an Electronic Paper Display Array, Qileng, A.; Wu, Y.; Liu, Y.; Bakker, E. Anal. Chem., 2023, 95, 17878–17885. DOI: 10.1021/acs.analchem.3c03994.
(411)   Self-Plasticised Poly(Vinyl Chloride) (PVC) as Matrix for Ion-Selective Electrodes, Forrest, T.; Bakker, E. PCT Application, submitted.
(410)   Correction: A submersible probe with in-line calibration and a symmetrical reference element for continuous direct nitrate concentration measurements, Forrest, T.; Cherubini, T.; Jeanneret, S.; Zdrachek, E.; Damala, P.; Bakker, E. Environ. Sci.: Processes Impacts, 2023, 25, 1131 - 1132. DOI: 10.1039/d3em90017g (open access).
(409)   CHanalysis 2023 – Artificial Intelligence meets Analytical Excellence, Bleiner, D.; Bakker, E. Chimia, 2023, 77, 546-547. DOI: 10.2533/chimia.2023.546 (open access).
(408)   Self-powered optical ion sensor array based on potentiometric probes coupled to electronic paper, Wu, Y.; Qileng, A.; Bakker, E. Sens. Actuators, B, 2023, 396, 134561. DOI: 10.1016/j.snb.2023.134561 (open access).
(407)   Ultrasensitive Sensing of pH and Fluoride with Enhanced Constant Potential Coulometry at Membrane Electrodes, Nussbaum, R.; Nonis, A.; Jeanneret, S.; Cherubini, T.; Bakker, E. Sens. Actuators, B, 2023, 392, 134101. DOI: 10.1016/j.snb.2023.134101 (open access).
(406)   Integrated Enzyme-Linked Immunosensor with Biofunctionalized Ion-Selective Membranes by Pulstrode Delivery of Substrate, Mattos, G. J.; Bakker, E. Biosens. Bioelectron. X, 2023, 14, 100351. DOI: 10.1016/j.biosx.2023.100351 (open access).
(405)   Mátrafüred 2022 International Conference on Chemical Sensors, Bakker, E.; Buhlmann, P.; Gooding, J. J.; Gyurcsanyi, R. E.; Pretsch, E. Electroanalysis, 2023, 35, e202300060. DOI: 10.1002/elan.202300060.
(404)   Wearable Sensors, deMello, A.; Bakker, E. ACS Sensors, 2023, 8, 1368–1370. DOI: 10.1021/acssensors.3c00437 (open access).
(403)   On-chip antifouling hydrogel membrane-integrated microelectrode arrays for in situ high resolution quantification of Nickel fraction available for bio-uptake in natural waters, Creffield, S.; Tercier-Waeber, M.-L.; Bakker, E.; Layglon, N. Molecules, 2023, 28, 1346. DOI: 10.3390/molecules28031346 (open access).
(402)   On-field high-resolution quantification of the cobalt fraction available for bio-uptake in natural waters using antifouling gel-integrated microelectrode arrays, Layglon, N.; Creffield, S.; Bakker, E.; Tercier-Waeber, M.-L. Marine Pollution Bulletin, 2023, 189, 114807. DOI: 10.1016/j.marpolbul.2023.114807 (open access).
(401)   Solvatochromic Coextraction-based Optical Carbonate Nanosensors, Tiuftiakov, N.; Robinson, K. J.; Bakker, E. Electroanalysis, 2023, 35, e202200507. DOI: 10.1002/elan.202200507.
(400)   Submersible Probe with In-line Calibration and Symmetrical Reference Element for Continuous Direct Nitrate Measurements, Forrest, T.; Cherubini, T.; Jeanneret, S.; Zdrachek, E.; Damala, P.; Bakker, E. Environ. Sci.: Processes Impacts, 2023, 25, 519 - 530. DOI: 10.1039/D2EM00341D (open access).
(399)   Portable Instrument and Current Polarization Limitations of High Sensitivity Constant-Potential Capacitive Readout with Polymeric Ion-Selective Membranes, Kraikaew, P.; Soda, Y.; Nussbaum, R.; Jeanneret, S.; Bakker, E. Sens. Actuators, B, 2023, 379, 133220. DOI: 10.1016/j.snb.2022.133220 (open access).
(398)   Aerosol-into-liquid capturing and detecting ultratrace atmospheric metals across gas/liquid interface separated by a Janus membrane electrode, Zhao, Y.; Cen, T.; Jiang, F.; He, W.; Zhang, X.; Feng, X.; Gao, M.; Ludwig, C.; Bakker, E.; Wang, J. PNAS, 2023, 120, e2219388120. DOI: 10.1073/pnas.2219388120.
(397)   Symmetric Cell for Improving Solid Contact pH Electrodes, Zdrachek, E.; Forrest, T.; Bakker, E. Anal. Chim. Acta, 2023, 1239, 340652. DOI: 10.1016/j.aca.2022.340652 (open access).
(396)   Commercially available nitrate ionophores in potentiometric sensors are not superior to common ion-exchangers, Damala, P.; Zdrachek, E.; Bakker, E. Electroanalysis, 2023, 35, 2200247. DOI: 10.1002/elan.202200247 (open access).
(395)   Mass Transfer from Ion Sensing Component-Loaded Nanoemulsions into Ion-Selective Membranes: An Electrochemical Quartz Crystal Microbalance and Thin Film Coulometry Study, Mao, C.; Soda, Y.; Robinson, K. J.; Forrest, T.; Bakker, E. ACS Measurement Science Au, 2023, 3, 45–52. DOI: 10.1021/acsmeasuresciau.2c00053 (open access).
2022 Publications:
(394)   Optical Detection of Heparin in Whole Blood Samples using Nanosensors Embedded in an Agarose Hydrogel, Nussbaum, R.; Robinson, K. J.; Soda, Y.; Bakker, E. ACS Sensors, 2022, 7, 3956–3962. DOI: 10.1021/acssensors.2c02154
(393)   Self-Powered Signal Transduction of Ion-Selective Electrodes to an Electronic Paper Display, Wu, Y.; Bakker, E. ACS Sensors, 2022, 7, 3201–3207. DOI: https://doi.org/10.1021/acssensors.2c01826.
(392)   CHanalysis 2022 – Back to the Future of Analytical Excellence, Bleiner, D.; Suter, M.; Bakker, E. Chimia, 2022, 76, 720-721. DOI: 10.2533/chimia.2022.720 (open access).
(391)   Do Reversible Sensors Require Reversible Interactions?, Bakker, E. ACS Sensors, 2022, 8, 2102–2103. DOI: 10.1021/acssensors.2c01676 (open access).
(390)   Response Mechanism of Hyperpolarization-based Polyion Nanosensors, Soda, Y.; Robinson, K. J.; Bakker, E. ACS Sensors, 2022, 7, 3108–3115. DOI: 10.1021/acssensors.2c01599.
(389)   Unconditioned Symmetric Solid-Contact Electrodes for Potentiometric Sensing, Damala, P.; Zdrachek, E.; Forrest, T.; Bakker, E. Anal. Chem., 2022, 94, 11549–11556. DOI: 10.1021/acs.analchem.2c01728.
(388)   Direct Energy Transfer from a pH Glass Electrode to a Liquid Crystal Display, Wu, Y.; Bakker, E. Anal. Chem., 2022, 93, 10408-10414. DOI: 10.1021/acs.analchem.2c01557.
(387)   Chemo and Regioselective Multiple C(sp2)−H Insertions of Malonate Metal Carbenes for Late-Stage Functionalizations of Azahelicenes, Nikolova, Y.; Fabri, B; Lorente, P. M. ; Guarnieri-Ibáñez, A.; de Aguirre, A.; Soda, Y.; Zinna, F.; Besnard, C.; Guénée, L.; di Bari, L.; Bakker, E.; Poblador-Bahamonde, A. I.; Lacour, J. Angew. Chem. Int. Ed., 2022, 61, e202210798. DOI: 10.1002/anie.202210798 (open access).
(386)   Hyperpolarized Solvatochromic Nanosensors towards Heparin Sensing in Blood, Nussbaum, R.; Robinson, K. J.; Soda, Y.; Bakker, E. Chimia, 2022, 76, 284-287. DOI: 10.2533/chimia.2022.284 (open access).
(385)   Recent improvements to the selectivity of extraction-based optical ion sensors , Robinson, K. J.; Soda, Y.; Bakker, E. Chem. Commun., 2022, 58, 4279-4287. DOI: 10.1039/d1cc06636f (open access).
(384)   Ion–Ionophore Interactions in Polymeric Membranes Studied by Thin Layer Voltammetry, Mao, C.; Robinson, K. J.; Yuan, D.; Bakker, E. Sens. Actuators, B, 2022, 358, 131428. DOI: 10.1016/j.snb.2022.131428 (open access).
(383)   Solid-Contact Potentiometric Cell with Symmetry, Zdrachek, E.; Forrest, T.; Bakker, E. Anal. Chem., 2022, 94, 612-617. DOI: 10.1021/acs.analchem.1c04722.
(382)   Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to Environmental Quality Standards, Layglon, N.; Abdou, M.; Massa, F.; Castellano, M.; Bakker, E.; Povero, P.; Tercier-Waeber, M.-L. J. Environ. Manage., 2022, 317, 115375. DOI: 10.1016/j.jenvman.2022.115375 (open access).
(381)   Estuarine dissolved speciation and partitioning of trace metals: a novel approach to study biogeochemical processes, Abdou, M.; Tercier-Waeber, M. L.; Dutruch, L.; Bossy, C.; Pougnet, F.; Coynel, A.; Bakker, E.; Blanc, G.; Schäfer, J. Environmental Research, 2022, 208, 112596. DOI: 10.1016/j.envres.2021.112596.
(380)   Dialysis Membranes as Liquid Junction Materials: New Simplified Calculation Model based on the Phase Boundary Potential, Forrest, T.; Höfler, L.; Bakker, E. J. Electroanal. Chem., 2022, 904, 115886. DOI: 10.1016/j.jelechem.2021.115886 (open access).
(379)   Taking Earth’s Pulse with Low-Cost Sensors, Bakker, E.; Ward, C. P.; Tarpeh, W.; Wang, Z. ACS Sensors, 2022, 7, 1613. DOI: 10.1021/acssensors.2c01015 (open access).
2021 Publications:
(378)   Surfactants for Optode Emulsion Stabilization Without Sacrificing Selectivity or Binding Constants, Robinson, K. J.; Mao, C.; Bakker, E. Anal. Chem., 2021, 93, 15941–15948. DOI: 10.1021/acs.analchem.1c03232.
(377)   Protamine/Heparin Optical Nanosensor based on Solvatochromism, Soda, Y.; Robinson, K.; Nussbaum, R.; Bakker, E. Chem. Sci, 2021, 12, 15596-15602. DOI: 10.1039/D1SC04930E (open access).
(376)   Self-Powered Potentiometric Sensor with Memory, Sailapu, S. K.; Sabaté, N.; Bakker, E. ACS Sensors, 2021, 6, 3650–3656. DOI: 10.1021/acssensors.1c01273 (open access).
(375)   Electronic Control of Constant Potential Capacitive Readout of Ion-Selective Electrodes for High Precision Sensing, Kraikaew, P.; Sailapu, S. K.; Bakker, E. Sens. Actuators, B, 2021, 344, 130282. DOI: 10.1016/j.snb.2021.130282 (open access).
(374)   Ionic Strength-Independent Potentiometric Cation Concentration Sensing on Paper Using a Tetrabutylammonium-based Reference Electrode, Soda, Y.; Bakker, E. Sens. Actuators, B, 2021, 346, 130527. DOI: 10.1016/j.snb.2021.130527 (open access).
(373)   2021: A Year Starting Full of Hope, Gooding, J. J.; Camasso, N.; Bakker, E.; Kelley, S.; Sailor, M.; Merkx, M.; Mao, L.; Clark, H.; Maboudian, R.; Masson, J.-F. ACS Sensors, 2021, 6, 1-2. DOI: 10.1021/acssensors.0c02726 (open access).
(372)   Perspectives and Future Directions of the Division of Analytical Sciences of the Swiss Chemical Society, Bakker, E.; Bleiner, D.; Groh, K. Chimia, 2021, 75, 455-456. DOI: 10.2533/chimia.2021.455 (open access).
(371)   Ion-to-electron capacitance of single-walled carbon nanotube layers before and after ion-selective membrane deposition, Zdrachek, E.; Bakker, E. Microchim. Acta, 2021, 188, 149. DOI: 10.1007/s00604-021-04805-1 (open access).
(370)   Potentiometric Sensing, Zdrachek, E.; Bakker, E. Anal. Chem., 2021, 93, 72-102. DOI: 10.1021/acs.analchem.0c04249 (open access).
(369)   Unbiased selectivity coefficients of potentiometric sensors using thin membrane layers, Zdrachek, E.; Bakker, E. Electroanalysis, 2021, 33, 1225-1232. DOI: 10.1002/elan.202060605.
(368)   Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals, Tercier-Waeber, M. L.; Confalonieri, F.; Abdou, M.; Dutruch, L.; Bossy, C.; Fighera, M.; Bakker, E.; Graziottin, F.; van der Wal, P.; Schaefer, J. Chemosphere, 2021, 282, 131014. DOI: 10.1016/j.chemosphere.2021.131014 (open access).
(367)   Colorimetric ratiometry with ion optodes for spatially resolved concentration analysis, Soda, Y.; Bakker, E. Anal. Chim. Acta, 2021, 1154, 338225. DOI: 10.1016/j.aca.2021.338225 (open access).
(366)   Self-Powered Electrochromic Readout of Potentiometric pH Electrodes, Jansod, S.; Bakker, E. Anal. Chem., 2021, 93, 4263-4269. DOI: 10.1021/acs.analchem.0c05117 (open access).
(365)   Separating Boundary Potential Changes of Thin Solid Contact Ion-Selective Membrane Electrodes by a Molecular Redox Probe, Mao, C.; Yuan, D.; Wang, L.; Bakker, E. J. Electroanal. Chem., 2021, 880, 114800. DOI: 10.1016/j.jelechem.2020.114800 (open access).
(364)   Newly designed gel integrated nanostructured gold-based interconnected microelectrode arrays for direct arsenite monitoring in aquatic systems, Tercier-Waeber, M. L.; Fighera, M.; Abdou, M.; Groc, P.; Bakker, E.; van der Waal, P. Sens. Actuators, B, 2021, 328, 128996. DOI: 10.1016/j.snb.2020.128996 (open access).
(363)   In situ Voltammetric Sensor of Potentially Bioavailable Inorganic Mercury in Marine Aquatic Systems Based on a Gel-Integrated Nanostructured Gold-based Microelectrode Arrays, Tercier-Waeber, M. L.; Abdou, M.; Kowal, J. L.; Bakker, E.; Fighera, M.; van der Waal, P. ACS Sensors, 2021, 6, 925-937. DOI: 10.1021/acssensors.0c02111.
(362)   Let's Aim to Develop Sensors, not Electroanalytical Techniques: The Direct Detection of Dissolved Inorganic Carbon, Bakker, E. ACS Sensors, 2021, 6, 2785-2786. DOI: 10.1021/acssensors.1c01660 (open access).
2020 Publications:
(361)   Triumph and Misery of Measurement Science, Bakker, E. ACS Sensors, 2020, 5, 2264-2265. DOI: 10.1021/acssensors.0c01542 (open access).
(360)   Ultra-Sensitive Measurement of Ocean pH, Kraikaew, P.; Bakker, E. Chimia, 2020, 74, 1021. DOI: 10.2533/chimia.2020.1021 (open access).
(359)   Rapid Constant Potential Capacitive Measurements with Solid-Contact Ion-Selective Electrodes Coupled to Electronic Capacitor, Kraikaew, P.; Sailapu, S. K.; Bakker, E. Anal. Chem., 2020, 92, 14174–14180. DOI: 10.1021/acs.analchem.0c03254 (open access).
(358)   Emulsion Doping of Ionophores and Ion-Exchangers into Ion-Selective Electrode Membranes, Soda, Y.; Gao, W.; Bosset, J.; Bakker, E. Anal. Chem., 2020, 92, 14319–14324. DOI: 10.1021/acs.analchem.0c02920 (open access).
(357)   Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout, Sailapu, S. K.; Kraikaew, P.; Sabaté, N.; Bakker, E. ACS Sensors, 2020, 5, 2909–2914. DOI: 10.1021/acssensors.0c01284 (open access).
(356)   A Scientific Journey with Ionophore-Based Sensors, Bakker, E. Chimia, 2020, 7/8, 569-576. DOI: 10.2533/chimia.2020.569 (open access).
(355)   Giants in Sensing: A Virtual Issue to Celebrate Five Years of ACS Sensors, Bakker, E.; O'Sullivan, C. K.; Cremer, P. S. ACS Sensors, 2020, 5, 1249-1250. DOI: 10.1021/acssensors.0c00875 (open access).
(354)   Remembering NJ, Gooding, J. J.; Mazur, A.; Bakker, E.; Kelley, S.; Sailor, M.; Merkx, M.; Mao, L.; Clark, H.; Maboudian, R.; Long, Y. ACS Sensors, 2020, 5, 887-888. DOI: 10.1021/acssensors.0c00660 (open access).
(353)   Mátrafüred 2019 International Conference of Electrochemical Sensors, Bakker, E.; Buhlmann, P.; Gyurcsanyi, R.E.; Pretsch, E.; Wang, J. Electroanalysis, 2020, 32, 667-668. DOI: 10.1002/elan.202080331 (open access).
(352)   Colorimetric Absorbance Mapping and Quantitation on Paper-Based Analytical Devices, Soda, Y.; Robinson, K. J.; Cherubini, T.; Bakker, E. Lab on a Chip, 2020, 20, 1441-1448 . DOI: 10.1039/D0LC00028K (open access).
(351)   Happy 5th Anniversary for ACS Sensors, Gooding, J.; Bakker, E.; Kelley, S.; Tao, N. J.; Sailor, M.; Merkx, M.; Mao, L.; Clark, H. ACS Sensors, 2020, 5, 1-2. DOI: 10.1021/acssensors.0c00023 (open access).
(350)   Direct Potentiometric Sensing of Anion Concentration (Not Activity), Gao, W.; Xie, X.; Bakker, E. ACS Sensors, 2020, 5, 313-318. DOI: 10.1021/acssensors.9b02523 (open access).
(349)   Optical Sensing with a Potentiometric Sensing Array by Prussian Blue Film Integrated Closed Bipolar Electrodes, Jansod, S.; Cherubini, T.; Soda, Y.; Bakker, E. Anal. Chem., 2020, 92, 9138–9145. DOI: 10.1021/acs.analchem.0c01421 (open access).
(348)   Spatial variability of arsenic speciation in the Gironde Estuary: emphasis on bioavailable (dynamic) inorganic arsenite and arsenate fractions, Penezic, A.; Tercier-Waeber, M.-L.; Abdou, M.; Bossy, C.; Dutruch, L.; Bakker, E.; Schäfer, J. Marine Chemistry, 2020, 223, 103804. DOI: 10.1016/j.marchem.2020.103804.
(347)   Potentiometric Sensor Array with Multi-Nernstian Slope, Zdrachek, E.; Bakker, E. Anal. Chem., 2020, 92, 2926-2930. DOI: 10.1021/acs.analchem.9b05187 (open access).
(346)   Thin Layer Membrane Systems as Rapid Development Tool for Potentiometric Solid Contact Ion-Selective Electrodes, Forrest, T.; Zdrachek, E.; Bakker, E. Electroanalysis, 2020, 32, 799-804. DOI: 10.1002/elan.201900674.
(345)   Ultra-Sensitive Seawater pH Measurement by Capacitive Readout of Potentiometric Sensors, Kraikaew, P.; Jeanneret, S.; Soda, Y.; Cherubinini, T.; Bakker, E. ACS Sensors, 2020, 5, 650-654. DOI: 10.1021/acssensors.0c00031 (open access).
(344)   Quantification of Colorimetric Data for Paper-Based Analytical Devices, Soda, Y.; Bakker, E. ACS Sensors, 2020, 4, 3093-3101. DOI: 10.1021/acssensors.9b01802 (open access).
(343)   Renewable magnetic ion-selective colorimetric microsensors based on surface modified polystyrene beads, Apichai, S.; Wang, L.; Grudpan, K.; Bakker, E. Anal. Chim. Acta, 2020, 1094, 136-141. DOI: 10.1016/j.aca.2019.10.011.
(342)   A Solid-State Reference Electrode Based on a Self-Referencing Pulstrode, Gao, W.; Zdrachek, E.; Xie, X.; Bakker, E. Angew. Chem. Int. Ed., 2020, 59, 2294-2298. DOI: 10.1002/anie.201912651.
(341)   Sensor device for measuring a parameter of an analyte, European patent application, EP20194360.2, 03 September 2020.
2019 Publications:
(340)   Equipment-Free Detection of K+ on Paper, Soda, Y.; Citterio, D.; Bakker, E. Chimia, 2019, 73, 944. DOI: 10.2533/chimia.2019.944 (open access).
(339)   An Ode to You, Reviewer for ACS Sensors, Bakker, E. ACS Sensors, 2019, 4, 1964. DOI: 10.1021/acssensors.9b01481 (open access).
(338)   Closed Bipolar Electrode Colorimetric Transduction of Potentiometric PVC-Based Membrane Electrodes, Jansod, S.; Bakker, E. ACS Sensors, 2019, 4, 1008-1016. DOI: 10.1021/acssensors.9b00179 (open access).
(337)   Electrogenerated Chemiluminescence for Chronopotentiometric Sensors, Gao, W.; Jeanneret, S.; Yuan, D.; Cherubini, T.; Wang, L.; Xie, X.; Bakker, E. Anal. Chem., 2019, 91, 4889–4895. DOI: 10.1021/acs.analchem.9b00787 (open access).
(336)   From Molecular and Emulsified Ion Sensors to Membrane Electrodes: Molecular and Mechanistic Sensor Design , Zdrachek, E.; Bakker, E. Acc. Chem. Res., 2019, 52, 1400-1408. DOI: 10.1021/acs.accounts.9b00056 (open access).
(335)   Simplified Fabrication for Ion-Selective Optical Emulsion Sensor with Hydrophobic Solvatochromic Dye Transducer: A Cautionary Tale, Wang, L.; Sadler, S.; Cao, T.; Xie, X.; Bakker, E. Anal. Chem., 2019, 91, 8973-8978. DOI: 10.1021/acs.analchem.9b01145 (open access).
(334)   Equipment-Free Detection of K+ on Microfluidic Paper-based Analytical Devices Based on Exhaustive Replacement with Ionic Dye in Ion-selective Capillary Sensors, Soda, Y.; Citterio, D.; Bakker, E. ACS Sensors, 2019, 4, 670-677. DOI: 10.1021/acssensors.8b01521 (open access).
(333)   Potentiometric Sensing, Zdrachek, E.; Bakker, E. Anal. Chem., 2019, 91, 2–26. DOI: 10.1021/acs.analchem.8b04681 (open access).
(332)   Ion-Selective Electrodes, Bakker, E., Encyclopedia of Analytical Science (Third Ed.), Elsevier, 2019, 231-251.
(331)   Paper-Supported Thin-layer Ion Transfer Voltammetry for Ion Detection, Ding, J.; Cherubini, T.; Yuan, D.; Bakker, E. Sens. Actuators, B, 2019, 280, 69-76. DOI: 10.1016/j.snb.2018.10.046.
(330)   Tunable detection range of ion-selective nano-optodes by controlling solvatochromic dye transducer lipophilicity, Wang, L.; Bakker, E. Chem. Commun., 2019, 55, 12539-12542. DOI: 10.1039/C9CC06729A (open access).
2018 Publications:
(329)   Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood, Tavallaie, R.; McCarroll, J.; Schuhmann, W.; Bakker, E.; Hibbert, D. B.; Kavallaris, M.; Gooding, J. J. Nature Nanotechnology, 2018, 13, 1066–1071. DOI: 10.1038/s41565-018-0232-x.
(328)   Fast Potentiometric CO2 Sensor for High-resolution In situ Measurements in Fresh Water Systems, Athavale, R.; Pankratova, N.; Dinkel, C.; Bakker, E.; Wehrli, B.; Brand, A. Environ. Sci. Technol., 2018, 52, 11259-11266. DOI: 10.1021/acs.est.8b02969 (open access).
(327)   Editorial: Mátrafüred 2017 International Conference on Electrochemical Sensors, Bakker, E.; Buhlmann, P.; Gyurcsanyi, R.; Pretsch, E.; Wang, J. Electroanalysis, 2018, 30, 594-595. DOI: 10.1002/elan.201880231 (open access).
(326)   Capacitive Model for Coulometric Readout of Ion-Selective Electrodes, Jarolimova, Z.; Han, T.; Vanamo, U.; Bobacka, J.; Bakker, E. Anal. Chem., 2018, 90, 8700–8707. DOI: 10.1021/acs.analchem.8b02145 (open access).
(325)   Ion-Exchange Microemulsions for Eliminating Dilute Interferences in Potentiometric Determinations, Apichai, S.; Wang, L.; Pankratova, N.; Grudpan, K.; Bakker, E. Electroanalysis, 2018, 30, 2462-2466. DOI: 10.1002/elan.201800366.
(324)   Light addressable ion sensor for localized real-time monitoring of extracellular potassium , Yang, Y.; Cuartero, M.; Gonçales, V.; Gooding, J.; Bakker, E. Angew. Chem. Int. Ed., 2018, 57, 16801–16805. DOI: 10.1002/anie.201811268.
(323)   Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes, Zdrachek, E.; Bakker, E. Anal. Chem., 2018, 90, 7591–7599. DOI: 10.1021/acs.analchem.8b01282 (open access).
(322)   In-Line Seawater Phosphate Detection with Ion-Exchange Membrane Reagent Delivery, Sateanchok, S.; Pankratova, N.; Cuartero, M.; Cherubini, T.; Grudpan, K.; Bakker, E. ACS Sensors, 2018, 3, 2455–2462. DOI: 10.1021/acssensors.8b01096 (open access).
(321)   Colorimetric Readout for Potentiometric Sensors with Closed Bipolar Electrodes, Jansod, S.; Cuartero, M.; Cherubini, T.; Bakker, E. Anal. Chem., 2018, 90, 6376-6379. DOI: 10.1021/acs.analchem.8b01585 (open access).
(320)   Ion Transfer Voltammetry in Polyurethane Thin Films Based on Functionalised Cationic [6]Helicenes for Carbonate Detection, Jarolimova, Z.; Bosson, J.; Labrador, G. M.; Lacour, J.; Bakker, E. Electroanalysis, 2018, 30, 1378-1385. DOI: 10.1002/elan.201800080.
(319)   Selective Distance-Based K+ Quantification on Paper-Based Microfluidics, Gerold, C. T.; Bakker, E.; Henry, C. S. Anal. Chem., 2018, 90, 4894-4900. DOI: 10.1021/acs.analchem.8b00559 (open access).
(318)   An exciting year ahead for ACS Sensors, Gooding, J.; Mazur, A.; Sailor, M.; Merkx, M.; Kelley, S; Tao, N.; Long, T.; Bakker, E. ACS Sensors, 2018, 3, 1-2. DOI: 10.1021/acssensors.8b00013 (open access).
(317)   Colorimetric Ionophore-Based Coextraction Titrimetry of Potassium Ions, Thajee, K.; Wang, L.; Grudpan, K.; Bakker, E. Anal. Chim. Acta, 2018, 1029, 37-43. DOI: 10.1016/j.aca.2018.05.012.
(316)   In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors, Cuartero, M.; Crespo, G.; Cherubini, T.; Pankratova, N.; Confalonieri, F.; Massa, F.; Tercier-Waeber, M.L.; Abdou, M.; Schäfer, J.; Bakker, E. Anal. Chem., 2018, 90, 4702–4710. DOI: 10.1021/acs.analchem.7b05299 (open access).
(315)   Describing Ion Exchange at Membrane Electrodes for Ions of Different Charge, Zdrachek, E.; Bakker, E. Electroanalysis, 2018, 30, 633–640. DOI: 10.1002/elan.201700700.
(314)   Ion Transfer Voltammetry at Thin Films Based on Functionalized Cationic [6]Helicenes, Jarolimova, Z.; Bosson, J.; Labrador, G. M.; Lacour, J.; Bakker, E. Electroanalysis, 2018, 30, 650-657. DOI: 10.1002/elan.201700669.
(313)   Electron hopping between Fe 3d states in ethynylferrocene-doped poly(methyl methacrylate)-poly(decyl methacrylate) copolymer membranes, Cuartero, M.; Acres, R. G.; Jarolimova, Z.; Bakker, E.; Crespo, G. A.; De Marco, R. Electroanalysis, 2018, 30, 596-601. DOI: 10.1002/elan.201700510.
(312)   Surface modified polystyrene microsensors containing lipophilic solvatochromic dye transducers, Wang, L.; Xie, X.; Cao, T.; Szilagyi, I.; Bakker, E. Chem. Eur. J., 2018, 24, 7921-7925. DOI: 10.1002/chem.201800077.
2017 Publications:
(311)   Agarose Hydrogel Containing Immobilized pH Buffer Microemulsion without Increasing Permselectivity, Coll Crespi, M.; Crespo, G. A.; Xie, X.; Touilloux, R.; Tercier-Waeber, M. L.; Bakker, E. Talanta, 2018, 177, 191-196. DOI: 10.1016/j.talanta.2017.08.053.
(310)   Fluorinated Tripodal Receptors for Potentiometric Chloride Detection in Biological Fluids, Pankratova, N.; Cuartero, M.; Jowett, L. A.; Howe, E. N.; Gale, P. A.; Bakker, E.; Crespo, G. A. Biosens. Bioelectron., 2018, 99, 70-76. DOI: 10.1016/j.bios.2017.07.001.
(309)   So, you have a great new sensor. How will you validate it?, Bakker, E. ACS Sensors, 2018, 3, 1431. DOI: 10.1021/acssensors.8b00798 (open access).
(308)   Should There be Minimum Information on Reporting Standards for Sensors?, Gooding, J. J.; Sailer, M. J.; Kelley, S.; Merkx, M.; Bakker, E.; Long, Y. T.; Tao, N. J. ACS Sensors, 2017, 2, 1377–1379. DOI: 10.1021/acssensors.7b00737 (open access).
(307)   In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes, Cuartero, M.; Pankratova, N.; Crespo, G. A.; Cherubini, T.; Massa, F.; Confalonieri, F.; Bakker, E. Environ. Sci. Technol. Lett., 2017, 4, 410–415. DOI: 10.1021/acs.estlett.7b00388 (open access).
(306)   Electrochemical ion transfer mediated by a lipophilic Os(II)/Os(III) dinonyl bipyridyl probe incorporated in thin film membranes, Jansod, S.; Wang, L.; Cuartero, M.; Bakker, E. Chem. Commun., 2017, 53, 10757-10760. DOI: 10.1039/C7CC05908F.
(305)   August 2017: Two years of submissions, Gooding, J. J.; Tao, N.; Kelley, S.; Merkx, M.; Sailor, M.; Bakker, E.; Long, Y.; Mazur, A. ACS Sensors, 2017, 2, 1068–1069. DOI: 10.1021/acssensors.7b00539 (open access).
(304)   Celebrating Electrochemical Sensors at the 2017 Matrafured Meeting, Bakker, E. ACS Sensors, 2017, 2, 854–854. DOI: 10.1021/acssensors.7b00452 (open access).
(303)   Overcoming Pitfalls in Boundary Elements Calculations with Computer Simulations of Ion Selective Membrane Electrodes , Yuan, D.; Bakker, E. Anal. Chem., 2017, 89, 7828–7831. DOI: 10.1021/acs.analchem.7b01777 (open access).
(302)   Environmental Water Analysis with Membrane Electrodes, Cuartero, M.; Bakker, E. Current Opinion in Electrochemistry, 2017, 3, 97-105. DOI: 10.1016/j.coelec.2017.06.010.
(301)   Robust Solid-contact Ion Selective Electrodes for High-Resolution In-Situ Measurements in Fresh Water Systems, Athavale, R.; Dinkel, C.; Wehrli, B.; Bakker, E.; Crespo, G. A.; Brand, A. Environ. Sci. Technol. Lett., 2017, 4, 286–291. DOI: 10.1021/acs.estlett.7b00130 (open access).
(300)   Reflecting on how ACS Sensors can help advance the field of sensing, Gooding, J.; Long, Y.-T.; Tao, N.; Kelley, S.; Merkx, M.; Sailer, M.; Bakker, E. ACS Sensors, 2017, 2, 455–456. DOI: 10.1021/acssensors.7b00240 (open access).
(299)   Ionophore-Based Titrimetric Detection of Alkali Metal Ions in Serum, Zhai, J.; Xie, X.; Cherubini, T.; Bakker, E. ACS Sensors, 2017, 2, 606–612. DOI: 10.1021/acssensors.7b00165 (open access).
(298)   Welcome to the first anniversary issue of ACS Sensors, Gooding, J. J.; Bakker, E.; Long, Y.-T.; Tao, N.; Kelley, S.; Merkx, M.; Sailer, M.; Mazur, A. ACS Sensors, 2017, 2, 1–2. DOI: 10.1021/acssensors.7b00004 (open access).
(297)   Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes, Cuartero, M.; Acres, R. G.; Bradley, J.; Jarolimova, Z.; Wang, L.; Bakker, E.; Crespo, G. A.; De Marco, R. Electrochim. Acta, 2017, 238, 357–367. DOI: 10.1016/j.electacta.2017.04.047.
(296)   In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters, Pankratova, N.; Cuartero, M.; Crespo, G.; Bakker, E. Anal. Chem., 2017, 89, 571–575. DOI: 10.1021/acs.analchem.6b03946 (open access).
(295)   Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon, Wang, L.; Xie, X.; Zhai, Z.; Bakker, E. Chem. Commun., 2016, 52, 14254 - 14257. DOI: 10.1039/C6CC07841A.
(294)   Voltammetric Thin Layer Ionophore Based Films: Part 2. Semi-Empirical Treatment, Yuan, D.; Cuartero, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2017, 89, 595-602. DOI: 10.1021/acs.analchem.6b03355.
(293)   Voltammetric Thin Layer Ionophore Based Films: Part 1. Experimental Evidence and Numerical Simulations, Yuan, D.; Cuartero, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2017, 89, 586–594. DOI: 10.1021/acs.analchem.6b03354.
(292)   Direct Sensing of Total Alkalinity Profile in a Stratified Lake, Ghahraman Afshar, M.; Tercier-Waeber, M. L.; Wehrli, B.; Bakker, E. Geochem. Persp. Let., 2017, 3, 85-93. DOI: 10.7185/geochemlet.1709 (open access).
(291)   Time-Dependent Determination of Unbiased Selectivity Coefficients of Ion-Selective Electrodes for Multivalent Ions, Zdrachek, E.; Bakker, E. Anal. Chem., 2017, 89, 13441–13448. DOI: 10.1021/acs.analchem.7b03726 (open access).
2016 Publications:
(290)   Evidence of Double Layer/Capacitive Charging in Carbon Nanomaterial-Based Solid Contact Polymeric Ion-Selective Electrodes, Cuartero, M.; Bishop, J.; Walker, R.; Acres, R. G.; Bakker, E.; De Marco, R.; Crespo, G. A. Chem. Commun., 2016, 52, 9703-9706. DOI: 10.1039/C6CC04876E.
(289)   Wearable Sensors – An Exciting Area of Research for Sensor Scientists, Bakker, E.; Gooding, J. J. ACS Sensors, 2016, 1, 834–834. DOI: 10.1021/acssensors.6b00423 (open access).
(288)   Should ACS Sensors publish papers on fluorescent sensors for metal ions at all?, Gooding, J. J.; Bakker, E.; Kelley, S. ACS Sensors, 2016, 1, 324-325. DOI: 10.1021/acssensors.6b00213 (open access).
(287)   Complexometric Titrations: New Reagents and Concepts to Overcome Old Limitations, Zhai, J.; Bakker, E. Analyst, 2016, 141, 4252-4261. DOI: 10.1039/C6AN00538A.
(286)   Electrochemical Ion Transfer With Thin Films of Poly(3-octylthiophene), Cuartero, M.; Acres, R. G.; De Marco, R.; Bakker, E.; Crespo, G. A. Anal. Chem., 2016, 88, 6939–6946. DOI: 10.1021/acs.analchem.6b01800.
(285)   Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing, Cuartero, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2016, 88, 5649–5654. DOI: 10.1021/acs.analchem.6b01085.
(284)   What Should an ACS Sensors Paper Look Like?, Gooding, J. J.; Kelley, S.; Bakker, E.; Long, Y.; Tao, N. J. ACS Sensors, 2016, 1, 102-103. DOI: 10.1021/acssensors.6b00086 (open access).
(283)   Welcome to ACS Sensors, Gooding, J. J.; Kelley, S. O.; Bakker, E.; Long, Y.; Tao, N.; Mazur, A. I. ACS Sensors, 2016, 1, 1-2. DOI: 10.1021/acssensors.6b00015 (open access).
(282)   Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes, Jansod, S.; Ghahraman Afshar, M.; Crespo, G.; Bakker, E. Anal. Chem., 2016, 88, 3444–3448. DOI: 10.1021/acs.analchem.6b00346 (open access).
(281)   Determination of pKa Values of Hydrophobic pH Sensitive Colorimetric Probes in Nanospheres, Xie, X.; Zhai, J.; Jarolimova, Z.; Bakker, E. Anal. Chem., 2016, 88, 3015–3018. DOI: 10.1021/acs.analchem.5b04671.
(280)   Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe, Wallabregue, A.; Moreau, D.; Sherin, P.; Moneva, P.; Jarolimova, Z.; Bakker, E.; Vauthey, E.; Gruenberg, J.; Lacour, J. J. Am. Chem. Soc., 2016, 138, 1752–1755. DOI: 10.1021/jacs.5b09972.
(279)   Ion-Selective Optical Nanosensors based on Solvatochromic Dyes with Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation, Xie, X.; Szilagyi, I.; Zhai, J.; Wang, L.; Bakker, E. ACS Sensors, 2016, 1, 516–520. DOI: 10.1021/acssensors.6b00006 (open access).
(278)   Electroanalysis with Membrane Electrodes and Liquid-Liquid Interfaces, Bakker, E. Anal. Chem., 2016, 88, 395–413. DOI: 10.1021/acs.analchem.5b04034 (open access).
(277)   Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion and Polyion Detection, Ghahraman Afshar, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2016, 88, 3945–3952. DOI: 10.1021/acs.analchem.6b00141.
(276)   Ionophore Based Voltammetric Ion Activity Sensing with Thin Layer Membranes, Cuartero, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2016, 88, 1654–1660. DOI: 10.1021/acs.analchem.5b03611.
(275)   Can Calibration-free Sensors be Realized?, Bakker, E. ACS Sensors, 2016, 1, 838-841. DOI: 10.1021/acssensors.6b00247 (open access).
(274)   Phenytoin Drug Speciation Analysis with Ion-Selective Membranes , Jansod, S.; Ghahraman Afshar, M.; Crespo, G. A.; Bakker, E. Biosens. Bioelectron., 2016, 79, 114-120. DOI: 10.1016/j.bios.2015.12.011.
(273)   Ion-selective Fluorescent and pH Independent Nanosensors Based on Functionalized Polyether Macrocycles, Jarolimova, Z.; Mahesh, V.; Lacour, J.; Bakker, E. Chem. Sci., 2016, 7, 525-533. DOI: 10.1039/C5SC03301B (open access).
(272)   Local Acidification of the Membrane Surface for Potentiometric Measurements of Anions in Environmental Samples, Pankratova, N.; Ghahraman Afshar, M.; Yuan, D.; Crespo, G. A.; Bakker, E. ACS Sensors, 2016, 1, 48-54. DOI: 10.1021/acssensors.5b00015 (open access).
2015 Publications:
(271)   Solvatochromic dyes as pH independent indicators for ionophore emulsion based complexometric titrations, Zhai, J.; Xie, X.; Bakker, E. Anal. Chem., 2015, 87, 11587-11591. DOI: 10.1021/acs.analchem.5b03526.
(270)   Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with Charged Solvatochromic Dyes , Xie, X.; Bakker, E. Anal. Chem., 2015, 87, 11587–11591. DOI: 10.1021/acs.analchem.5b03526.
(269)   Tandem Electrochemical Desalination–Potentiometric Nitrate Sensing for Seawater Analysis, Cuartero, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2015, 87, 8084–8089. DOI: 10.1021/acs.analchem.5b01973.
(268)   All-Solid-State Potentiometric Sensors with Multi-Walled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples, Yuan, D.; Anthis, A.; Ghahraman Afshar, M.; Pankratova, N.; Cuartero, M.; Crespo, G.; Bakker, E. Anal. Chem., 2015, 87, 8640–8645. DOI: 10.1021/acs.analchem.5b01941.
(267)   Antifouling membrane integrated renewable gold microelectrode for in situ detection of As(III), Touilloux, R.; Tercier-Waeber, M. L.; Bakker, E. Anal. Methods, 2015, 7, 7503-7510. DOI: 10.1039/c5ay01941a.
(266)   Charged Solvatochromic Dyes as Signal Transducers in pH Independent Fluorescent and Colorimetric Ion Selective Nanosensors, Xie, X.; Gutierrez, A.; Trofimov, V.; Szilagyi, I.; Soldati, T.; Bakker, E. Anal. Chem., 2015, 87, 9954–9959. DOI: 10.1021/acs.analchem.5b02566.
(265)   A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom, Neel, B.; Cardozo, C.; Perret, D.; Bakker, E. J. Chem. Ed., 2015, 92, 1889-1891. DOI: 10.1021/acs.jchemed.5b00291.
(264)   Anion-Exchange Nanospheres as Titration Reagents for Anionic Analytes , Zhai, J.; Xie, X.; Bakker, E. Anal. Chem., 2015, 87, 8347–8352. DOI: 10.1021/acs.analchem.5b01530.
(263)   Thin Layer Ionophore-Based Membrane for Potentiometric Multianalyte Detection, Crespo, G. A.; Cuartero, M.; Bakker, E. Anal. Chem., 2015, 87, 7729–7737. DOI: 10.1021/acs.analchem.5b01459.
(262)   In-situ ammonium profiling using solid contact ion selective electrodes in eutrophic lakes, Athavale, R.; Kokorite, I.; Crespo, G. A.; Dinkel, C.; Bakker, E.; Wehrli, B.; Brand, A. Anal. Chem., 2015, 87, 11990–11997. DOI: 10.1021/acs.analchem.5b02424.
(261)   Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes, Xie, X.; Gutierrez, A.; Trofimov, V.; Szilágyi, I.; Soldati, T.; Bakker, E. Chimia, 2015, 69, 196-198. DOI: 10.2533/chimia.2015.196 (open access).
(260)   Direct arsenic(III) sensing by a renewable gold nanoparticle plated Ir-based microelectrode , Touilloux, R.; Tercier-Waeber, M.; Bakker, E. Analyst, 2015, 140, 3526-2534. DOI: 10.1039/C5AN00151J.
(259)   Thin Layer Samples Controlled by Dynamic Electrochemistry, Cuartero, M.; Crespo, G. A.; Bakker, E. Chimia, 2015, 69, 203-206. DOI: 10.2533/chimia.2015.203 (open access).
(258)   Thin Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection, Ghahraman Afshar, M.; Crespo, G.A.; Bakker, E. Angew. Chem. Int. Ed., 2015, 54, 8110-8113. DOI: 10.1002/anie.201500797.
(257)   Potentiometric Sensing Array for Monitoring Aquatic Systems, Pankratova, N.; Jeanneret, S.; Tercier-Waeber, M. L.; Crespo, G.; Cherubini, T.; Crespi, M.; Pomati, F.; Bakker, E. Environ. Sci.: Processes Impacts, 2015, 17, 906 - 914. DOI: 10.1039/C5EM00038F.
(256)   Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition, Ghahraman Afshar, M.; Crespo, G. A.; Barrabés, N.; Pawlak, M.; Bakker, E. Electrochim. Acta, 2015, 179, 16-23. DOI: 10.1016/j.electacta.2015.03.180.
(255)   Ion-Selective Optode Nanospheres as Heterogeneous Indicator Reagents in Complexometric Titrations, Zhai, J.; Xie, X.; Bakker, E. Anal. Chem., 2015, 87, 2827–2831. DOI: 10.1021/ac504213q.
(254)   Paper-Based Thin Layer Coulometric Sensors for Halide Detection, Cuartero, M.; Crespo, G.A.; Bakker, E. Anal. Chem., 2015, 87, 1981–1990. DOI: 10.1021/ac504400w.
(253)   Ion Selective Optodes: From the Bulk to the Nanoscale, Xie, X.; Zhai, J.; Bakker, E. Anal. Bioanal. Chem., 2015, 407, 3899-3910. DOI: 10.1007/s00216-014-8413-4.
(252)   Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes, Sohail, M.; De Marco, R.; Pawlak, M.; Bakker, E.; He, N.; Latonen, R.-M.; Lindfors, T.; Jarolimova, Z. Langmuir, 2015, 31, 10599-10608. DOI: 10.1021/acs.langmuir.5b01693.
(251)   Titration-free buffer capacity sensor using a dynamic optode based on hydrogel-incorporated photochromic spiropyran, Mistlberger, G.; Pawlak, M.; Bakker, E.; Klimant, I. Chem. Commun., 2015, 51, 4172-4175. DOI: 10.1039/C4CC07821G.
(250)   Thin Layer Coulometry of Nitrite with Ion-Selective Membranes, Ghahraman Afshar, M.; Crespo, G. A.; Dorokhin, D.; Neel, B.; Bakker, E. Electroanalysis, 2015, 27, 609-619. DOI: 10.1002/elan.201400522.
(249)   Coulometric Calcium Pump for Thin Layer Sample Titrations, Ghahraman Afshar, M.; Crespo, G. A.; Bakker, E. Anal. Chem., 2015, 87, 10125–10130. DOI: 10.1021/acs.analchem.5b02856.
2014 Publications:
(248)   Exhaustive Thin Layer Cyclic Voltammetry for Absolute Multianalyte Halide Detection, Cuartero, M.; Crespo, G.; Ghahraman Afshar, M.; Bakker, E. Anal. Chem., 2014, 86, 11387–11395. DOI: 10.1021/ac503344f.
(247)   Detecting and Manipulating Ions: From Potentiometry to the Nanoscale, Xie, X.; Bakker, E. q&more, 2014, 2, 6-11. DOI: http://q-more.chemeurope.com/q-more-articles/173/detecting-and-manipulating-ions.html (open access).
(246)   Potentiometric Response from Ion-Selective Nanospheres with Voltage-Sensitive Dyes, Xie, X.; Zhai, J.; Bakker, E. J. Am. Chem. Soc., 2014, 136, 16465-16468. DOI: 10.1021/ja5107578 (open access).
(245)   Environmental Aquatic Sensing at the University of Geneva, Bakker, E.; Tercier-Waeber, M. L. Chimia, 2014, 68, 772–777. DOI: 10.2533/chimia.2014.772.
(244)   Custom-Made Combination Galvanostat/Potentiostat and High Impedance Potentiometer for Decentralized Measurements of Ionophore-Based Electrodes, Jeanneret, S.; Crespo, G.; Ghahraman Afshar, M.; Bakker, E. Sens. Actuators, B, 2015, 207, 631–639. DOI: 10.1016/j.snb.2014.10.084.
(243)   Ionophore-based ion-exchange emulsions as novel class of complexometric titration reagents, Zhai, J.; Xie, X.; Bakker, E. Chem. Commun., 2014, 50, 12659 - 12661. DOI: 10.1039/c4cc05754f.
(242)   Bringing Ion-Selective Sensors to the Nanoscale: Blurring the Lines Between Sensing and Bulk Solution Chemistry, Xie, X.; Bakker, E. Anal. Scientist, 2014, 20, 17-18. DOI: https://theanalyticalscientist.com/issues/0914/shrinking-ion-selective-sensors-for-success/ (open access).
(241)   Evaluation of Egorov's Improved Separate Solution Method for Determination of Low Selectivity Coefficients by Numerical Simulation, Bakker, E. Anal. Chem., 2014, 86, 8021-8024. DOI: 10.1021/ac502638s (open access).
(240)   Visible Light Induced Photoacid Generation within Plasticized PVC Membranes for Copper (II) Ion Extraction, Xie, X.; Mistlberger, G.; Bakker, E. Sens. Actuators, B, 2014, 204, 807–810. DOI: 10.1016/j.snb.2014.08.041.
(239)   Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion, Xie, X.; Bakker, E. PhysChemChemPhys, 2014, 16, 19781 - 19789. DOI: 10.1039/c4cp02566k.
(238)   Ionophore based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode, Xie, X.; Zhai, J.; Crespo, G. A.; Bakker, E. Anal. Chem., 2014, 86, 8770–8775. DOI: 10.1021/ac5019606 (open access).
(237)   Direct Alkalinity Detection with Ion-Selective Chronopotentiometry, Ghahraman Afshar, M.; Crespo, G. A.; Xie, X.; Bakker, E. Anal. Chem., 2014, 86, 6461–6470. DOI: 10.1021/ac500968c (open access).
(236)   Photoelectric Conversion based on Proton-Coupled Electron Transfer Reactions, Xie, X.; Bakker, E. J. Am. Chem. Soc., 2014, 136, 7857–7860. DOI: 10.1021/ja503491k (open access).
(235)   Potassium-Selective Optical Microsensors Based On Surface Modified Polystyrene Microspheres, Xie, X.; Crespo, G. A.; Zhai, J.; Szilagyi, I.; Bakker, E. Chem. Commun., 2014, 50, 4592-4595. DOI: 10.1039/C4CC01313A.
(234)   Chronopotentiometric Carbonate Detection with All-Solid-State Ionophore-Based Electrodes, Jarolimova, Z.; Crespo, G. A.; Xie, X.; Ghahraman Afshar, M.; Pawlak, M.; Bakker, E. Anal. Chem., 2014, 86, 6307–6314. DOI: 10.1021/ac5004163.
(233)   Concanavalin A electrochemical sensor based on the surface blocking principle at ion-selective polymeric membranes, Pawlak, M.; Mistlberger, G.; Bakker, E. Microchim. Acta, 2015, 182, 129-137. DOI: 10.1007/s00604-014-1309-3.
(232)   Counterelectrode based on ion-exchange Donnan exclusion membrane for electrochemical bioanalysis, Ghahraman Afshar, M.; Crespo, G.; Bakker, E. Biosens. Bioelectron., 2014, 61, 64-69. DOI: 10.1016/j.bios.2014.04.039.
(231)   Chronopotentiometry of Pure Electrolytes with Anion-Exchange Donnan Exclusion Membranes, Crespo, G. A.; Gharhaman Afshar, M.; Bakker, E. J. Electroanal. Chem., 2014, 731, 100-106. DOI: 10.1016/j.jelechem.2014.08.007.
(230)   pH Independent Nano-Optodes Based on Exhaustive Ion-Selective Nanospheres, Xie, X.; Zhai, J.; Bakker, E. Anal. Chem., 2014, 86, 2853–2856. DOI: 10.1021/ac403996s.
(229)   Nitrite-Selective Electrode Based On Cobalt(II) Tert-Butyl-Salophen Ionophore, Neel, B.; Gharhaman Afshar, M.; Crespo, G. A.; Pawlak, M.; Bakker, E. Electroanalysis, 2014, 26, 473–480. DOI: 10.1002/elan.201300607.
(228)   Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood, Crespo, G. A.; Ghahraman Afshar, M.; Dorokhin, D.; Bakker, E. Anal. Chem., 2014, 86, 1357–1360. DOI: 10.1021/ac403902f.
(227)   Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations, Néel, B.; Crespo, G. A.; Perret, D.; Bakker, E. J. Chem. Ed., 2014, 91, 1655–1660. DOI: 10.1021/ed4008149.
(226)   Light Controlled Reversible Release and Uptake of Potassium Ions from Ion-Exchanging Nanospheres, Xie, X.; Bakker, E. ACS App. Mater. Inter., 2014, 6, 2666–2670. DOI: 10.1021/am4049805.
(225)   Chemical modifications of ion-selective electrode membrane surfaces for clinical diagnostics, Pawlak, M.; Bakker, E. Electroanalysis, 2014, 26, 1121–1131. DOI: 10.1002/elan.201300449.
(224)   Ionophore-Based Optical Sensors, Mistlberger, G.; Crespo, G.A.; Bakker, E. Ann. Rev. Anal. Chem., 2014, 7, 483-512. DOI: 10.1146/annurev-anchem-071213-020307.
(223)   Potentiometric Sensors, Bakker, E., in Environmental Analysis with Electrochemical Sensors and Biosensors, Moretto, L. M.; Kalcher, K. (Eds.), Springer, 2014. ISBN 978-1-4939-0675-8
(222)   Photocurrent Generation Based on Light-Driven Proton Pump in Supported Liquid Membranes Doped with Photoswitchable Spiropyran , Xie, X.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Nature Chem., 2014, 6, 202-207. DOI: 10.1038/nchem.1858.
(221)   Low-Cost Thin Layer Coulometric Microfluidic Device Based on Ion-Selective Membrane for Calcium Determination, Dorokhin, D.; Crespo, G.A.; Ghahraman Afshar, M.; Bakker, E. Analyst, 2014, 139, 48 - 51. DOI: 10.1039/C3AN01715J.
(220)   Enhancing Ion-Selective Polymeric Membrane Electrodes by Instrumental Control, Bakker, E. Trends Anal. Chem., 2014, 53C, 98-105. DOI: 10.1016/j.trac.2013.09.014.
(219)   Advancing Schwarzenbach’s complexometry: nanoscale titration reagents based on heterogeneous reactions, Zhai, J.; Xie, X.; Bakker, E. Chimia, 2014, 68, 899. DOI: 10.2533/chimia.2014.899 (open access).
2013 Publications:
(218)   Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores, Xie, X.; Mistlberger, G.; Bakker, E. Anal. Chem., 2013, 85, 9932–9938. DOI: 10.1021/ac402564m (open access).
(217)   Dynamic Electrochemistry with Ionophore Based Ion-Selective Membranes, Crespo, G.A.; Bakker, E. RSC Advances, 2013, 3, 25461-25474. DOI: 10.1039/C3RA43751E.
(216)   All Solid State Chronopotentiometric Ion-Selective Electrodes Based on Ferrocene Functionalized PVC, Jarolimova, Z.; Crespo, G. A.; Gharaman Afshar, M.; Pawlak, M.; Bakker, E. J. Electroanal. Chem., 2013, 709, 118-125. DOI: 10.1016/j.jelechem.2013.10.011.
(215)   Oxazinoindolines as Fluorescent H+ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors, Xie, X.; Crespo, G. A.; Bakker, E. Anal. Chem., 2013, 85, 7434–7440. DOI: 10.1021/ac401367b (open access).
(214)   Molecularly Imprinted Polymer Microspheres Containing Photoswitchable Spiropyran-Based Binding Sites, Renkecz, T.; Mistlberger, G.; Pawlak, M.; Horvath, V.; Bakker, E. ACS App. Mater. Inter., 2013, 5, 8537–8545. DOI: 10.1021/am401958e (open access).
(213)   Detecting of Heparin in Whole Blood for Point of Care Anticoagulation Control During Surgery, Bakker, E.; Crespo, G. A.; Afshar, M. G.; Saxer, T.; Bendjelid, K. Chimia, 2013, 67, 350. DOI: 10.2533/chimia.2013.350.
(212)   A Label-Free Potentiometric Sensor Principle for the Detection of Antibody-Antigen Interactions, Ozdemir, M. S.; Marczak, M.; Bohets, H.; Bonroy, K.; Rohmans, D.; Stuyver, L.; Vanhoutte, K.; Pawlak, M.; Bakker, E. Anal. Chem., 2013, 85, 4770–4776. DOI: 10.1021/ac400514u (open access).
(211)   Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes, Grygolowicz-Pawlak, E.; Crespo, G.; Mistlberger, G.; Ghahraman Afshar, M.; Bakker, E. Anal. Chem., 2013, 85, 6208-6212. DOI: 10.1021/ac400470n (open access).
(210)   Transport and accumulation of ferrocene tagged poly(vinyl chloride) at the buried interfaces of solid-contact plasticized poly(vinyl chloride) based ion-selective membrane electrodes, Sohail, M.; De Marco, R.; Alam, M. T.; Pawlak, M.; Bakker, E. Analyst, 2013, 138, 4266-4269. DOI: 10.1039/C3AN00464C.
(209)   PVC-based Ion-Selective Electrodes with Enhanced Biocompatibility by Surface Modification with "Click" Chemistry, Pawlak, M.; Grygolowicz-Pawlak, E.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Electroanalysis, 2013, 25, 1840–1846. DOI: 10.1002/elan.201300212.
(208)   Photoresponsive Ion Extraction/Release Systems: Dynamic Ion Optodes for Calcium and Sodium Based on Photochromic Spiropyran, Mistlberger, G.; Xie, X.; Pawlak, M.; Crespo, G.; Bakker, E. Anal. Chem., 2013, 85, 2983-2990. DOI: 10.1021/ac4000283.
(207)   A Non-Severinghaus Potentiometric CO2 Sensor with Improved Characteristics, Xie, X.; Bakker, E. Anal. Chem., 2013, 85, 1332-1336. DOI: 10.1021/ac303534v (open access).
(206)   Evidence for a Surface Confined Ion-to-Electron Transduction Reaction in Solid-Contact Ion-Selective Electrodes Based on Poly(3-octylthiophene), Veder, J.-P.; De Marco, R.; Patel, K.; Si, P.; Grygolowicz-Pawlak, E.; James, M.; Alam, M. T.; Sohail, M.; Pretsch, E.; Bakker, E. Anal. Chem., 2013, 85, 10495–10502. DOI: 10.1021/ac4024999 (open access).
2012 Publications:
(205)   Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode, Afshar, M.G.; Crespo, G.A.; Bakker, E. Anal. Chem., 2012, 84, 8813-8821. DOI: 10.1021/ac302092m (open access).
(204)   Reversible Photodynamic Chloride-Selective Sensor Based on Photochromic Spiropyran, Xie, X.; Mistlberger, G.; Bakker, E. J. Am. Chem. Soc., 2012, 134, 16929-16932. DOI: 10.1021/ja307037z.
(203)   Detection Limits of Thin Layer Coulometry with Ionophore-Based Ion-Selective Membranes, Shvarev, A.; Néel, B.; Bakker, E. Anal. Chem., 2012, 84, 8038-8044. DOI: 10.1021/ac302092m (open access).
(202)   Reversible Detection of the Anticoagulant Heparin with Permselective Membrane Electrodes, Crespo, G.A.; Afshar, M.G.; Bakker, E. Angew. Chem. Int. Ed., 2012, 51, 12575-12578. DOI: 10.1002/anie.201207444.
(201)   Thin Layer Coulometric Determination of Nitrate in Fresh Waters, Sohail, M.; De Marco, R.; Lamb, K.; Bakker, E. Anal. Chim. Acta, 2012, 744, 39-44. DOI: 10.1016/j.aca.2012.07.026.
(200)   Coulometric Sodium Chloride Removal System with Nafion Membrane for Seawater Sample Treatment, Grygolowicz-Pawlak, E.; Sohail, M.; Pawlak, M.; Néel, B.; Shvarev, A.; De Marco, R.; Bakker, E. Anal. Chem., 2012, 84, 6158-6165. DOI: 10.1021/ac301096r (open access).
(199)   Ionophore-Based Ion Optodes without a Reference Ion: Electrogenerated Chemiluminescence for Potentiometric Sensors, Crespo, G.A.; Bakker, E. Analyst, 2012, 137, 4988-4994. DOI: 10.1039/C2AN35516G.
(198)   In Situ Surface Functionalization of Plasticized Poly(Vinyl Chloride) Membranes by ‘Click Chemistry’, Pawlak, M.; Mistlberger, G.; Bakker, E. J. Mater. Chem., 2012, 22, 12796-2801. DOI: 10.1039/C2JM31118F.
(197)   Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly(vinyl chloride), Mistlberger, G.; Crespo, G.A.; Xie, X.; Bakker, E. Chem. Commun., 2012, 48, 5662-5664. DOI: 10.1039/C2CC30657C.
(196)   Pulsed Chronopotentiometric Membrane Electrodes Based on Plasticized Poly(Vinyl Chloride) with Covalently Bound Ferrocene Functionalities as Solid Contact Transducer, Pawlak, M.; Grygolowicz-Pawlak, E.; Bakker, E. Pure Appl. Chem., 2012, 84, 2045-2054. DOI: 10.1351/PAC-CON-11-09-23.
(195)   Electrogenerated Chemiluminescence for Potentiometric Sensors, Crespo, G.; Mistlberger, G.; Bakker, E. J. Am. Chem. Soc., 2012, 134, 205-207. DOI: 10.1021/ja210600k (open access).
(194)   Towards Ion-Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru(bpy)32+ Transport across a Plasticized Poly(vinyl chloride) Membrane, Crespo, G.; Mistlberger, G.; Bakker, E. Electroanalysis, 2012, 24, 61-68. DOI: 10.1002/elan.201100434.
(193)   Direct Optical Carbon Dioxide Sensing Based on a Polymeric Sensing Film Doped with a Selective Molecular Tweezer Type Ionophore, Xie, X.; Tercier-Waeber, M.; Pawlak, M.; Bakker, E. Anal. Chem., 2012, 84, 3163-3169. DOI: 10.1021/ac2030046 (open access).
(192)   Editorial: Matrafured Meeting on Electrochemical Sensors, Bakker, E.; Buhlmann, P.; Gyurcsanyi, R.; Pretsch, E.; Wang, J. Electroanalysis, 2012, 24, 11-12. DOI: 10.1002/elan.201180008.
(191)   Interference Compensation for Thin Layer Coulometric Ion-Selective Membrane Electrodes by the Double Pulse Technique, Grygolowicz-Pawlak, E.; Numnuam, A.; Thavarungkul, P.; Kanatharana, P.; Bakker, E. Anal. Chem., 2012, 84, 1327-1335. DOI: 10.1021/ac202273k.
(190)   Advances in Potentiometry, Bakker, E.; Pretsch, E. Electroanalytical Chemistry: A Series of Advances (A. Bard, Editor), 2012, CRC Press.
(189)   Direct Detection of Acidity, Alkalinity and pH with Membrane Electrodes, Crespo, G.; Afshar, M.G.; Bakker, E. Anal. Chem., 2012, 84, 10165-10169. DOI: 10.1021/ac302868u (open access).
2011 Publications:
(188)   Electrogenerated Chemiluminescence Triggered by Electroseparation of Ru(bpy)32+ Across a Supported Liquid Membrane, Crespo, G.; Mistlberger, G.; Bakker, E. Chem. Commun., 2011, 47, 11644-11646. DOI: 10.1039/C1CC14822B.
(187)   Advancing Membrane Electrodes and Optical Ion Sensors, Bakker, E.; Crespo, G.; Grygolowicz-Pawlak, E.; Mistlberger, G.; Pawlak, M.; Xie, X. Chimia, 2011, 65, 141-149. DOI: 10.2533/chimia.2011.141.
(186)   Water Uptake in Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Solid-Contact Polymeric Ion-Selective Electrodes, Veder, J.-P.; De Marco, R.; Clarke, G.; Jiang, S.P.; Prince, K.; Dalgiesh, R.; Pretsch, E.; Bakker, E. Analyst, 2011, 136, 3252-3258. DOI: 10.1039/C1AN15267J.
(185)   Thin Layer Coulometry Ion Sensing Protocol with Potassium Selective Membrane Electrodes, Grygolowicz-Pawlak, E.; Bakker, E. Electrochim. Acta, 2011, 56, 10359-10363. DOI: 10.1016/j.electacta.2011.02.053.
(184)   Chemical kinetics of gold nanorod growth in aqueous cetyltrimethylammonium bromide solutions, Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C. Cryst. Growth Des., 2011, 11, 3375-3380. DOI: 10.1021/cg101636r.
(183)   Membrane Response Model for Ion-Selective Electrodes Operated by Controlled Potential Thin-Layer Coulometry, Bakker, E. Anal. Chem., 2011, 83, 486-493. DOI: 10.1021/ac102016y.
Publications Before 2011:
(182)   Potentiometric Determination of Coextraction Constants of Potassium Salts in Ion-Selective Electrodes Utilizing a Nitrobenzene Liquid Membrane Phase, Silvester-Dean, D.; Grygolowicz-Pawlak, E.; Bakker, E. Anal. Chim. Acta, 2010, 683, 92-95. DOI: 10.1016/j.aca.2010.10.012.
(181)   A Synchrotron Radiation/Fourier Transform-Infrared Microspectroscopy (SR/FT-IRM) Study of Undesriable Water Inclusions in Solid Contact Polymeric Ion-Selective Electrodes, Veder, J.-P.; Patel, K.; Clarke, G.; Grygolowicz-Pawlak, E.; Silvester-Dean, D.; De Marco, R.; Pretsch, E.; Bakker, E. Anal. Chem., 2010, 82, 6203-6207. DOI: 10.1021/ac101009n (open access).
(180)   Ferrocene Bound Poly(Vinyl Chloride) as Ion to Electron Transducer in Electrochemical Sensors, Pawlak, M.; Grygolowicz-Pawlak, E.; Bakker, E. Anal. Chem., 2010, 82, 6887-6894. DOI: 10.1021/ac1010662 (open access).
(179)   An Acyclic Trialkylamine Virtually Planar at Nitrogen. Some Chemical Consequences of Nitrogen Planarity, Jie, Y.-P.; Livant, P.; Li, H.; Yang, M.M.; Zhu, W.; Cammarata, V.; Almond, P.; Sullens, T.; Qin, Y; Bakker, E. J. Org. Chem., 2010, 75, 4472-4479. DOI: 10.1021/jo100628v.
(178)   Amplified Potentiometric Transduction of DNA Hybridization Using Ion-Loaded Liposomes, Chumbimuni-Torres, K.Y.; Wu, J.; Clawson, C.; Galik, M.; Walter, A.; Flechsig, G.-U.; Bakker, E.; Zhang, L.; Wang, J. Analyst, 2010, 135, 1618-1623. DOI: 10.1039/C0AN00198H.
(177)   Thin Layer Coulometry with Ionophore Based Ion-Selective Membranes, Grygolowicz-Pawlak, E.; Bakker, E. Anal. Chem., 2010, 82, 4537-4542. DOI: 10.1021/ac100524z (open access).
(176)   Assessing ion-exchange properties and purity of lipophilic electrolytes by potentiometry and spectrophotometry, Silvester, D.S.; Grygolowicz-Pawlak, E.; Bakker, E. Electrochem. Commun., 2010, 12, 110-113. DOI: 10.1016/j.elecom.2009.10.048.
(175)   Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model, Bakker, E. J. Electroanal. Chem., 2010, 639, 1-7. DOI: 10.1016/j.jelechem.2009.09.031.
(174)   Background Current Elimination in Thin Layer Ion-Selective Membrane Coulometry, Grygolowicz-Pawlak, E.; Bakker, E. Electrochem. Commun., 2010, 12, 1195-1198. DOI: 10.1016/j.elecom.2010.06.017.
(173)   Real-Time Probing of the Growth Dynamics of Nanoparticles Using Potentiometric Ion-Selective Electrodes, Chumbimuni-Torres, K.Y.; Bakker, E.; Wang, J. Electrochem. Commun., 2009, 11, 1964-1967. DOI: 10.1016/j.elecom.2009.08.029.
(172)   International Conference on Electrochemical Sensors Matrafured 2008, Buhlmann, P.; Bakker, E.; Gyurcsanyi, R.; Pretsch, E.; Wang, J. Electroanalysis, 2009, 21, 1883-1886. DOI: 10.1002/elan.200990017.
(171)   Thin Layer Electrochemical Extraction of Non-Electroactive Cations, Si, P.; Bakker, E. Chem. Commun., 2009, 35, 5260-5262. DOI: 10.1039/B907893B.
(170)   Limitations of Current Polarization for Lowering the Detection Limit of Polymeric Membrane Potentiometric Sensors, Höfler, L.; Bedlechowicz, I.; Vigassy, T.; Gyurcsanyi, R.E.; Bakker, E.; Pretsch, E. Anal. Chem., 2009, 81, 3592-3599. DOI: 10.1021/ac802588j (open access).
(169)   Flash Chronopotentiometric Sensing of the Polyions Protamine and Heparin at Ion-Selective Membranes, Gemene, K.L.; Bakker, E. Anal. Biochem., 2009, 386, 276-281. DOI: 10.1016/j.ab.2008.12.023.
(168)   Synthesis and Characterization of High Integrity Solid Contact Polymeric Ion Sensors, De Marco, R.; Jee, E.; Prince, K.; Pretsch, E.; Bakker, E. Solid State Electrochem., 2009, 13, 137-148. DOI: 10.1007/s10008-008-0600-9.
(167)   Direct Measurement of Total Calcium in Physiological Fluids by Flash Chronopotentiometry at Polymer Membrane Ion-Selective Electrodes, Gemene, K.L.; Bakker, E. Anal. Chim. Acta, 2009, 648, 240-245. DOI: 10.1016/j.aca.2009.07.004.
(166)   Ion Channel Mimetic Chronopotentiometric Polymeric Membrane Ion Sensor for Surface Confined Protein Detection, Xu, Y.; Bakker, E. Langmuir, 2009, 25, 568-573. DOI: 10.1021/la802728p.
(165)   High Temperature Potentiometry: Modulated Response of Ion-Selective Electrodes During Heated Pulses, Chumbimuni-Torres, K.Y.; Thammakhet, C.; Galik, M.; Wu, J.; Galvo-Marzal, P.; Bakker, E.; Flechsig, G.-U.; Wang, J. Anal. Chem., 2009, 81, 10290-10294. DOI: 10.1021/ac902191h.
(164)   Elimination of undesirable water layers in solid contact polymeric ion-selective electrodes, Veder, J.-P.; De Marco, R.; Clarke, G.; Chester, R.; Nelson, A.; Prince, K.; Pretsch, E.; Bakker, E. Anal. Chem., 2008, 80, 6731-6740. DOI: 10.1021/ac800823f.
(163)   Electrochemical Sample Matrix Elimination for Trace Level Potentiometric Detection with Polymeric Membrane Ion-Seletive Electrodes, Chumbimuni-Torres, K.Y.; Calvo-Marcal, P.; Wang, J.; Bakker, E. Anal. Chem., 2008, 80, 6114-6118. DOI: 10.1021/ac800595p.
(162)   Nanoscale Potentiometry, Bakker, E.; Pretsch, E. Trends Anal. Chem., 2008, 27, 612-618. DOI: 10.1016/j.trac.2008.04.007.
(161)   Phosphate Selective Fluorescent Sensing Microspheres Based on Uranyl Salophene Ionophores, Wygladacz, K.; Qin, Y.; Wroblewski, W.; Bakker, E. Anal. Chim. Acta, 2008, 614, 77-84. DOI: 10.1016/j.aca.2008.02.069.
(160)   Erno Pretsch 65 years, Bakker, E. Electroanalysis, 2008, 20, 223-224. DOI: 10.1002/elan.200890002.
(159)   Modern Directions for Potentiometric Sensors, Bakker, E.; Chumbimuni-Torres, K.Y. J. Braz. Chem. Soc., 2008, 19, 621-629. DOI: 10.1590/S0103-50532008000400003.
(158)   New Trends in Ion-Selective Electrodes, Makarychev-Mikhailov, S.; Shvarev, A.; Bakker, E. In: Electrochemical Sensors, Biosensors and their Biomedical Applications (Zhang, Y; Ju, H; Wang, J., Eds), Elsevier, 2008.
(157)   Reversible Detection of Proteases and Their Inhibitors by a Pulsed Chronopotentiometric Polyion Sensitive Electrode, Xu, Y.; Shvarev, A.; Makarychev-Mikhailov, S.; Bakker, E. Anal. Biochem., 2008, 374, 366-370. DOI: 10.1016/j.ab.2007.10.043.
(156)   Potentiometric Detection of DNA Hybridization, Numnuam, A.; Chumbimuni-Torres, K.Y.; Xiang, Y.; Bash, R.; Thavarungkul, P.; Kanatharana, P.; Pretsch, E.; Wang, J.; Bakker, E. J. Am. Chem. Soc., 2008, 130, 410-411. DOI: 10.1021/ja0775467.
(155)   Direct Sensing of Total Acidity with Polymer Membrane Ion-Selective Electrodes, Gemene, K.L.; Bakker, E. Anal. Chem., 2008, 80, 3743-3750. DOI: 10.1021/ac701983x.
(154)   Evidence of a Water Layer in Solid-Contact Polymeric Ion Sensors, De Marco, R.; Veder, J.-P.; Clarke, G.; Nelson, A.; Prince, K.; Pretsch, E.; Bakker, E. PhysChemChemPhys, 2008, 10, 73-76. DOI: 10.1039/B714248J.
(153)   Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes, Numnuam, A.; Chumbimuni-Torres, K.Y.; Xiang, Y.; Bash, R.; Thavarungkul, P.; Kanatharana, P.; Pretsch, E.; Wang, J.; Bakker, E. Anal. Chem., 2008, 80, 707-712. DOI: 10.1021/ac701910r.
(152)   Operational Limits of Controlled Current Coulometry with Ion-Selective Polymeric Membranes, Bhakthavatsalam, V.; Bakker, E. Electroanalysis, 2008, 20, 225-232. DOI: 10.1002/elan.200703979.
(151)   Beyond Potentiometry: Robust Electrochemical Ion Sensor Concepts in View of Remote Chemical Sensing, Bakker, E.; Bhaktavatsalam, V.; Gemene, K. L. Talanta, 2008, 75, 629-635. DOI: 10.1016/j.talanta.2007.10.021.
(150)   Backside Calibration Chronopotentiometry: Using Current to Perform Ion Measurements by Zeroing the Transmembrane Ion Flux, Xu, Y.; Ngeontae, W.; Pretsch, E.; Bakker, E. Anal. Chem., 2008, 80, 7516-7523. DOI: 10.1021/ac800774e.
(149)   Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers, Xu, Y.; Xu, C.; Shvarev, A.; Becker, T.; De Marco, R.; Bakker, E. Anal. Chem., 2007, 79, 7154-7160. DOI: 10.1021/ac071201p.
(148)   Multiplexed Flow Cytometric Sensing of Blood Electrolytes in Physiological Samples Using Fluorescent Bulk Optode Microspheres, Xu, C.; Wygladacz, K.; Retter, R.; Bell, M.; Bakker, E. Anal. Chem., 2007, 79, 9505-9512. DOI: 10.1021/ac7016212.
(147)   Absorbance Characterization of Microsphere-Based Ion-Selective Optodes, Ye, N.; Wygladacz, K.; Bakker, E. Anal. Chim. Acta, 2007, 596, 195-200. DOI: 10.1016/j.aca.2007.06.015.
(146)   Polymerized Nile Blue Derivatives for Plasticizer-Free Fluorescent Bulk Optode Ion Sensors, Ngeontae, W.; Xu, C.; Ye, N.; Wygladacz, K.; Aeungmaitepirom, W.; Tuntulani, T.; Bakker, E. Anal. Chim. Acta, 2007, 599, 124-133. DOI: 10.1016/j.aca.2007.07.058.
(145)   Potentiometric Immunoassay with Quantum Dot Labels, Thürer, R.; Vigassy, T.; Hirayama, M.; Wang, J.; Bakker, E. Anal. Chem., 2007, 79, 5107-5110. DOI: 10.1021/ac070932m.
(144)   Multicolor Quantum-dot Encoding for Polymeric Particle-Based Optical Ion Sensors, Xu, C.; Bakker, E. Anal. Chem., 2007, 79, 3716-3723. DOI: 10.1021/ac0701233.
(143)   Modern Potentiometry, Bakker, E.; Pretsch, E. Angew. Chem. Int. Ed., 2007, 46, 5660-5668. DOI: 10.1002/anie.200605068.
(142)   Uniform Polymeric Hollow Microcapsules with Controlled Doping Levels Fabricated Under Non-Reactive Conditions, Wygladacz, K.; Ye, N.; Xu, C.; Retter, R.W.; Bell, M.; Hilgenbrink, A.; Bakker, E. Adv. Mat., 2007, 19, 1059-1063. DOI: 10.1002/adma.200602160.
(141)   Fluorescent microsphere fiber optic microsensor array for direct iodide detection at low picomolar concentrations, Wygladacz, K.; Bakker, E. Analyst, 2007, 132, 268-272. DOI: 10.1039/B614562K.
(140)   Backside Calibration Potentiometry: Ion Activity Measurements with Selective Supported Liquid Membranes by Calibrating from the Back Side of the Membrane, Malon, A.; Bakker, E.; Pretsch, E. Anal. Chem., 2007, 79, 632-638. DOI: 10.1021/ac061467g.
(139)   Selectivity Enhancement of Anion-Selective Electrodes by Pulsed Chronopotentiometry, Gemene, K.L.; Shvarev, A.; Bakker, E. Anal. Chim. Acta, 2007, 583, 190-196. DOI: 10.1016/j.aca.2006.09.042.
(138)   Guidelines for Improving the Lower Detection Limit of Ion-Selective Electrodes: A Systematic Approach, Radu, A.; Peper, S.; Bakker, E.; Diamond, D. Electroanalysis, 2007, 19, 144-154. DOI: 10.1002/elan.200603741.
(137)   Solid Contact Potentiometric Polymer Membrane Microelectrodes for the Detection of Silver Ions at the Femtomole Level, Rubinova, N.; Chumbimuni-Torres, K.; Bakker, E. Sens. Actuators, B, 2007, 121, 135-141. DOI: 10.1016/j.snb.2006.09.007.
(136)   Sensitivity and Working Range of Backside Calibration Potentiometry, Ngeontae, W.; Xu, Y.; Xu, C.; Aeungmaitepirom, W.; Tuntulani, T.; Pretsch, E.; Bakker, E. Anal. Chem., 2007, 79, 8705-8711. DOI: 10.1021/ac071248a.
(135)   Recentes Avancos e Novas Perspectivas dos Electrodos Ion-Selectivos, Chumbimuni-Torres, K.Y.; Marzal, P.C.; Kubota, L.T.; Bakker, E. Quim. Nova, 2006, 29, 1094-1100. DOI: .
(134)   Potentiometry at Trace Levels in Confined Samples: Ion-Selective Electrodes with sub-Femtomole Detection Limits, Malon, A.; Vigassy, T.; Bakker, E.; Pretsch, E. J. Am. Chem. Soc., 2006, 128, 8154-8155. DOI: 10.1021/ja0625780.
(133)   Electrochemical Sensors (Fundamental Review), Bakker, E.; Qin, Y. Anal. Chem., 2006, 78, 3965-3983. DOI: 10.1021/ac060637m.
(132)   Novel potentiometric and optical Ag+-selective sensors with subnanomolar detection limits, Szigeti, Z.; Malon, A.; Vigassy, T.; Csokai, V.; Grün, A.; Wygladacz, K.; Yu, N.; Bitter, R.; Bakker, E.; Pretsch, E. Anal. Chim. Acta, 2006, 572, 1-10. DOI: 10.1016/j.aca.2006.05.009.
(131)   Selective Coulometric Release of Ions from Ion Selective Polymeric Membranes for Calibration-Free Titrations, Bhakthavatsalam, V.; Shvarev, A.; Bakker, E. Analyst, 2006, 131, 895-900. DOI: 10.1039/B602906J.
(130)   Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion-Selective Electrodes, Szigeti, Z.; Vigassy, T.; Bakker, E.; Pretsch, E. Electroanalysis, 2006, 18, 1254-1265. DOI: 10.1002/elan.200603539.
(129)   Meeting Report: Electrochemical Sensors, Bakker, E.; Bühlmann, P.; Pretsch, E. Trends Anal. Chem., 2006, 25, 93-95. DOI: .
(128)   Calcium pulstrodes with 10-fold enhanced sensitivity for measurements in the physiological concentration range, Makarychev-Mikhailov, S.; Shvarev, A.; Bakker, E. Anal. Chem., 2006, 78, 2744-2751. DOI: 10.1021/ac052211y.
(127)   Potentiometric Biosensing of Proteins with Ultrasensitive Ion-Selective Microelectrodes, Chumbimuni-Torres, K.Y.; Rubinova, N.; Pretsch, E.; Wang, J.; Bakker, E. J. Am. Chem. Soc., 2006, 128, 13676-13677. DOI: 10.1021/ja065899k.
(126)   Fiber Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions, Wygladacz, K.; Radu, A.; Xu, C.; Qin, Y.; Bakker, E. Anal. Chem., 2005, 77, 4706-4712. DOI: 10.1021/ac050856s.
(125)   Solid Contact Potentiometric Sensors for Trace Level Measurements, Chumbimuni-Torres, K.; Ruvinova, N.; Radu, A.; Kubota, L.T.; Bakker, E. Anal. Chem., 2006, 78, 1318-1322. DOI: 10.1021/ac050749y.
(124)   Reversible Electrochemical Monitoring of Surface Confined Reactions at Liquid-Liquid Interfaces by Modulation of Ion Transfer Fluxes, Xu, Y.; De Marco, R.; Shvarev, A.; Bakker, E. Chem. Commun., 2005, , 3074-3076. DOI: 10.1039/B503548A.
(123)   Response Characteristics of a Reversible Electrochemical Sensor for the Polyion Protamine, Shvarev, A.; Bakker, E. Anal. Chem., 2005, 77, 5221-5228. DOI: 10.1021/ac050101l.
(122)   Microsphere Optical Ion Sensors Based On Doped Silica Templates, Xu, C.; Wygladacz, K.; Qin, Y.; Retter, R.; Bell, M.; Bakker, E. Anal. Chim. Acta, 2005, 537, 135-143. DOI: 10.1016/j.aca.2005.01.008.
(121)   Editorial: Trace-Metal Analysis, Bakker, E.; Günter, D.; Pretsch, E. Trends Anal. Chem., 2005, 24, 170. DOI: .
(120)   Potentiometric Sensors for Trace Level Analysis, Bakker, E.; Pretsch, E. Trends Anal. Chem., 2005, 24, 199-207. DOI: 10.1016/j.trac.2005.01.003.
(119)   Shifting the measuring range of chloride selective electrodes and optodes based on the anticrown ionophore [9]mercuracarborand-3 by the addition of 1-decanethiol, Radu, A.; Bakker, E. Chem. Anal., 2005, 50, 71-83. DOI: .
(118)   Imaging Fiber Microarray Fluorescent Ion Sensors Based on Bulk Optode Microspheres , Wygladacz, K.; Bakker, E. Anal. Chim. Acta, 2005, 532, 61-69. DOI: 10.1016/j.aca.2004.10.071.
(117)   Ion-selective Electrodes: (d) Liquid Membrane, E. Bakker (2005) Encylopedia of Analytical Sciences, Elsevier, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Vol. 4, pp. 509-514.
(116)   Dynamic Diffusion Model for Tracing the Real-Time Potential Response of Polymeric Membrane Ion-selective Electrodes, Radu, A.; Meir, A.J.; Bakker, E. Anal. Chem., 2004, 76, 6402-6409. DOI: 10.1021/ac049348t.
(115)   Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range, Sutter, J.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Anal. Chim. Acta, 2004, 523, 53-59. DOI: 10.1016/j.aca.2004.07.016.
(114)   Pulstrodes: Triple Pulse Control of Potentiometric Sensors, Makarychev-Mikhailov, S.; Shvarev, A.; Bakker, E. J. Am. Chem. Soc., 2004, 126, 10548-10549. DOI: 10.1021/ja047728q.
(113)   Electrochemical Sensors, Bakker, E. Anal. Chem., 2004, 76, 3285-3298. DOI: 10.1021/ac049580z.
(112)   Elimination of Dimer Formation in In(III) Pophyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore, Qin, Y.; Bakker, E. Anal. Chem., 2004, 76, 4379-4386. DOI: 10.1021/ac049577f.
(111)   Optical Determination of Ionophore Diffusion Coefficients in Plasticized Poly(Vinyl Chloride) Sensing Films, Long, R.; Bakker, E. Anal. Chim. Acta, 2004, 511, 91-95. DOI: 10.1016/j.aca.2004.01.028.
(110)   Distinguishing Free and Total Calcium with a Single Pulsed Galvanostatic Ion-Selective Electrode, Shvarev, A.; Bakker, E. Talanta, 2004, 63, 195-200. DOI: 10.1016/j.talanta.2003.10.010.
(109)   Optical Chloride Sensor based on [9]Mercuracarborand-3 with Massively Expanded Measuring Range, Xu, C.; Qin, Y.; Bakker, E. Talanta, 2004, 63, 180-184. DOI: 10.1021/ac026055w.
(108)   The Phase-Boundary Potential Model, Bakker, E.; Bühlmann, P.; Pretsch, E. Talanta, 2004, 63, 3-20. DOI: 10.1016/j.talanta.2003.10.006.
(107)   International Conference on Electrochemistry, Matrafured-02 (Guest Editorial), Bühlmann, P.; Bakker, E.; Pretsch, E.; Toth, K. Electroanalysis, 2003, 15, 2. DOI: .
(106)   Reversible Electrochemical Detection of Nonelectroactive Polyions, Shvarev, A.; Bakker, E. J. Am. Chem. Soc., 2003, 125, 11192-11193. DOI: 10.1021/ja037167n.
(105)   Rotating Electrode Potentiometry for Inner Solution Optimization of Low-Detection-Limit Ion-Selective Electrodes, Radu, A.; Telting-Diaz, M.; Bakker, E. Anal. Chem., 2003, 75, 6922-6931. DOI: 10.1021/ac0346961.
(104)   Applying Sensor Principles to the Multiplexed Particle-Based Flow Cytometric Analysis of Clinically Relevant Electrolytes, Bakker, E.; Bell, M. J. Clin. Ligand Assay, 2003, 26, 98-106. DOI: .
(103)   A Copolymerized Dodecacarborane Anion as Covalently Attached Cation-Exchanger in Ion-Selective Sensors, Qin, Y.; Bakker, E. Anal. Chem., 2003, 75, 6002-6010. DOI: 10.1021/ac034447c.
(102)   Pulsed Galvanostatic Control of Ionophore-Based Polymeric Ion Sensors, Shvarev, A.; Bakker, E. Anal. Chem., 2003, 75, 4541-4550. DOI: 10.1021/ac034409t.
(101)   Ion-Sensing Microspheres for Multiplexed Chemical Analysis of Clinical and Biological Samples, Peper, S.; Bakker, E. Sensors Update, 2003, 13, 83-104. DOI: .
(100)   Improving the Detection Limit of Anion-Selective Electrodes: An Iodide Electrode with a Nanomolar Detection Limit, Malon, A.; Radu, A.; Qin, W.; Qin, Y.; Ceresa, A.; Maj-Zurawska, M.; Bakker, E.; Pretsch, E. Anal. Chem., 2003, 75, 3865-3871. DOI: 10.1021/ac026454r.
(99)   Spectral Imaging and Electrochemical Study on the Response Mechanism of Ionophore-Based Polymeric Membrane Amperometric pH Sensors, Long, R.; Bakker, E. Electroanalysis, 2003, 15, 1261-1269. DOI: 10.1002/elan.200302806.
(98)   Ion-Pairing Ability, Chemical Retention, and Selectivity Behavior of Various Halogenated Dodecacarborane Cation Exchangers in Neutral Carrier Based Ion-Selective Electrodes, Peper, S.; Qin, Y.; Almond, P.; McKee, M.; Telting-Diaz, M.; Albrecht-Schmitt, T.; Bakker, E. Anal. Chem., 2003, 75, 2131-2139. DOI: 10.1021/ac026056o.
(97)   Mechanistic Insights into the Development of Highly Selective Optical Chloride Sensors Based on the [9]Mercuracarborand-3 Ionophore, Ceresa, A.; Qin, Y.; Peper, S.; Bakker, E. Anal. Chem., 2003, 75, 133-140. DOI: 10.1021/ac026055w.
(96)   Plasticizer-Free Microspheres for Ionophore-Based Sensing and Extraction Based on a Methyl Methacrylate–Decyl Methacrylate Copolymer Matrix, Peper, S.; Ceresa, A.; Qin, Y.; Bakker, E. Anal. Chim. Acta, 2003, 500, 127-136. DOI: 10.1016/S0003-2670(03)00275-7.
(95)   Plasticizer-Free Polymer Containing a Covalently Immobilized Ca2+-Selective Ionophore for Potentiometric and Optical Sensors, Qin, Y.; Peper, S.; Radu, A.; Ceresa, A.; Bakker, E. Anal. Chem., 2003, 75, 3038-3045. DOI: 10.1021/ac0263059.
(94)   Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory, Hudgins, S.; Qin, Y.; Bakker, E.; Shannon, C. J. Chem. Ed., 2003, 75, 3038-3045. DOI: 10.1021/ed080p1303.
(93)   How Do Pulsed Amperometric Ion Sensors Work? A P.D.E. Solution, Bakker, E.; Meir, A.J. Siam Review, 2003, 45, 327-344. DOI: 10.1137/S00361445003771.
(92)   Quantitative Binding Constants of H+-Selective Chromoionophores and Anion Ionophores in Solvent Polymeric Sensing Membranes, Qin, Y.; Bakker, E. Talanta, 2002, 58, 909-918. DOI: 10.1016/S0039-9140(02)00405-8.
(91)   Potentiometric Sensors Improve Dramatically, Pretsch, E.; Bühlmann, P.; Bakker, E. Trends Anal. Chem., 2002, 21, XVI-XVIII. DOI: .
(90)   Electrochemical Sensors, Bakker, E.; Telting-Diaz, M. Anal. Chem., 2002, 74, 2781-2800. DOI: 10.1021/ac0202278.
(89)   Variable Dimensionality and New Uranium Oxide Topologies in the Alkaline-Earth Metal Uranyl Selenites AE[(UO2)(SeO3)2] (AE = Ca, Ba) and Sr[(UO2)(SeO3)2]·2H2O, Almond, P.M.; Peper, S.M.; Bakker, E.; Albrecht-Schmitt, T.E. Solid State Chem., 2002, 168, 358-366. DOI: 10.1006/jssc.2002.9673.
(88)   Mass-Produced Ionophore-Based Fluorescent Microspheres for Rapid Trace Level Determination of Lead Ions, Telting-Diaz, M.; Bakker, E. Anal. Chem., 2002, 74, 5251-5256. DOI: 10.1021/ac025596i.
(87)   Flow Cytometric Ion Detection with Plasticized Poly(Vinyl Chloride) Microspheres Containing Ionophores, Retter, R.; Peper, S.; Bell, M.; Tsagkatakis, I; Bakker, E. Anal. Chem., 2002, 74, 5420-5425. DOI: 10.1021/ac025782o.
(86)   Rational Design of Potentiometric Trace Level Ion Sensors. A Ag+-Selective Electrode with a 100 ppt Detection Limit, Ceresa, A.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Anal. Chem., 2002, 74, 4027-4036. DOI: 10.1021/ac025548y.
(85)   Trace Level Potentiometry: The New Wave of Ion-Selective Electrodes, Bakker, E.; Pretsch, E. Anal. Chem., 2002, 74, 420A-426A. DOI: 10.1021/ac022086f.
(84)   Ion-Selective Electrodes for Measurements in Biological Fluids, Bakker, E.; Meyerhoff, M.E. in Encyclopedia of Electrochemistry, A.J. Bard and M. Strattmann, eds., Volume 9 - Bioelectrochemistry, G.S. Wilson, ed., Wiley-VCH, Weinheim, 2002, pp. 277-307.
(83)   Plasticizer-Free Polymer Membrane Ion-Selective Electrodes Containing a Methacrylic Copolymer Matrix, Qin, Y.; Peper, S.; Bakker, E. Electroanalysis, 2002, 14, 1375-1382. DOI: 10.1002/1521-4109(200211)14:19/20<1375::AID-ELAN1375>3.0.CO;2-8.
(82)   Perbrominated Closo-Dodecacarborane Anion, 1-HCB11Br11-, as Ion-Exchanger in Cation-Selective Chemical Sensors, Peper, S.; Telting-Diaz, M.; Almond, P.; Albrecht-Schmitt, T.; Bakker, E. Anal. Chem., 2002, 74, 1327-1332. DOI: 10.1021/ac0156262.
(81)   Evaluation of the Separate Equilibrium Processes that Dictate the Upper Detection Limit of Ionophore-Based Potentiometric Sensors, Qin, Y.; Bakker, E. Anal. Chem., 2002, 74, 3134-3141. DOI: 10.1021/ac0156159.
(80)   Response and Diffusion Behavior of Mobile and Covalently Immobilized H+-Ionophores in Polymer Membrane Ion-Selective Electrodes, Püntener, M.; Fibbioli, M.; Bakker, E.; Pretsch, E. Electroanalysis, 2002, 14, 1329-1338. DOI: 10.1002/1521-4109(200211)14:19/20<1329::AID-ELAN1329>3.0.CO;2-V.
(79)   Potentiometry at Trace Levels, Bakker, E.; Pretsch, E. Trends Anal. Chem., 2001, 20, 11-19. DOI: 10.1016/S0167-2940(01)90073-1.
(78)   Erratum to “A Potentiometric Cd2+-Selective Electrodes with a Detection Limit in the Low ppt Range” [Analytica Chimica Acta 440 (2001) 71-79], Ion, A.C.; Bakker, E.; Pretsch, E. Anal. Chim. Acta, 2002, 452, 329-329. DOI: .
(77)   Effect of Lipophilic Ion-Exchanger Leaching on the Detection Limit of Carrier-Based Ion-Selective Electrodes, Telting-Diaz, M.; Bakker, E. Anal. Chem., 2001, 73, 5582-5589. DOI: 10.1021/ac010526h.
(76)   Quantification of the Concentration of Ionic Impurities in Polymeric Sensing Membranes with the Segmented Sandwich Technique, Qin, Y.; Bakker, E. Anal. Chem., 2001, 73, 5582-5589. DOI: 10.1021/ac0104126.
(75)   Monodisperse Plasticized Poly(Vinyl Chloride) Fluorescent Microspheres for Ionophore-Based Sensing and Extraction, Tsagkatakis, I.; Peper, S.; Retter, R.; Bell, M.; Bakker, E. Anal. Chem., 2001, 73, 6083-6087. DOI: 10.1021/ac010694+.
(74)   Phosphate Binding Characteristics and Selectivity Studies of Bifunctional Organotin Carriers, Tsagkatakis, I.; Chaniotakis, N.; Jurkschat, K.; Willem, R.; Qin, Y.; Bakker, E. Helv. Chim. Acta, 2001, 84, 1952-1961. DOI: 10.1002/1522-2675(20010711)84:7<1952::AID-HLCA1952>3.0.CO;2-X.
(73)   Direct potentiometry in the micromole and picomole concentration rangesproved Quantitative Detection Mode for Amperometric Solvent Polymeric Ion Sensors, Jadhav, S.; Meir, A.J.; Bakker, E. Electroanalysis, 2000, 12, 1251-1257. DOI: 10.1002/1521-4109(200011)12:16<1251::AID-ELAN1251>3.0.CO;2-P.
(59)   Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes, Mi, Y.; Bakker, E. Anal. Chem., 1999, 71, 5279-5287. DOI: 10.1021/ac9905930.
(58)   Revealing Binding Characteristics in Ion-Sensing Polymeric Membrane by Studying Equilibrium and Transient Potential Responses, Bakker, E.; Mi, Y. Electrochem Soc. Proc., 1999, 99-23, 69-78. DOI: .
(57)   Basic Response Principles of Voltammetric Ion-Selective Solvent Polymeric Membrane Sensors, Bakker, E.; Jadhav, S. Electrochem Soc. Proc., 1999, 99-13, 390-397. DOI: .
(56)   Renewable pH Cross-Sensitive Heparin Sensors with Incorporated Electrically Charged H+-selective Ionophores, Mathison, S.; Bakker, E. Anal. Chem., 1999, 71, 4614-4621. DOI: 10.1021/ac990387s.
(55)   Voltammetric and Amperometric Transduction for Solvent Polymeric Membrane Ion Sensors, Jadhav, S.; Bakker, E. Anal. Chem., 1999, 71, 3657-3664. DOI: 10.1021/ac990195x.
(54)   Polymer Membrane Ion-Selective Electrodes—What are the Limits?, Bakker, E.; Bühlmann, P.; Pretsch, E. Electroanalysis, 1999, 11, 915-933. DOI: 10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J.
(53)   Chemical Ion Sensors–Current Limits and New Trends, Bakker, E.; Diamond, D.; Lewenstam, A.; Pretsch, E. Anal. Chim. Acta, 1999, 393, 11-18. DOI: 10.1016/S0003-2670(99)00056-2.
(52)   Hydrophobic Membranes as Liquid-Junction Free Reference Electrodes, Bakker, E. Electroanalysis, 1999, 11, 788-792. DOI: 10.1002/(SICI)1521-4109(199907)11:10/11<788::AID-ELAN788>3.0.CO;2-4.
(51)   General Description of the Simultaneous Response of Potentiometric Ionophore-Based Sensors to Ions of Different Charge, Nägele, M.; Bakker, E.; Pretsch, E. Anal. Chem., 1999, 71, 1041-1048. DOI: 10.1021/ac980962c.
(50)   Lowering the Detection Limit of Solvent Polymeric Ion-Selective Electrodes. 2. Influence of Composition of Sample and Inner Reference Electrolyte, Sokalski, T.; Ceresa, A.; Fibbioli, M.; Zwickl, T.; Bakker, E.; Pretsch, E. Anal. Chem., 1999, 71, 1210-1214. DOI: 10.1021/ac9809332.
(49)   Lowering the Detection Limit of Solvent Polymeric Ion-Selective Electrodes. 1. Modeling the Influence of Steady-State Ion Fluxes, Sokalski, T.; Zwickl, T.; Bakker, E.; Pretsch, E. Anal. Chem., 1999, 71, 1204-1209. DOI: 10.1021/ac980944v.
(48)   Detection Limit of Polymeric Membrane Potentiometric Ion Sensors: How Can We Go Down to Trace Levels?, Mi, Y.; Mathison, S.; Goines, R.; Logue, A.; Bakker, E. Anal. Chim. Acta, 1999, 397, 103-111. DOI: 10.1016/S0003-2670(99)00396-7.
(47)   Polyion Sensors as Liquid Junction-Free Reference Electrodes, Mi, Y.; Mathison, S.; Bakker, E. Electrochem. Solid-State Lett., 1999, 2, 198-200. DOI: 10.1149/1.1390782.
(46)   Improving Measurement Stability and Reproducibility of Potentiometric Sensors for Polyions such as Heparin, Mathison, S.; Bakker, E. J. Pharm. Biom. Anal., 1999, 19, 163-173. DOI: 10.1016/S0731-7085(98)00185-X.
(45)   Acetic Acid Release From Polymeric Membrane pH Electrodes for Generating Local pH Gradients at Ion-Selective Membranes, Jadhav, S.; Bakker, E. Electrochem. Solid-State Lett., 1998, 1, 194-196. DOI: ESSL1998.
(44)   Polymeric Membrane pH Electrodes Based on Electrically Charged Ionophores, Mi, Y.; Green, C.; Bakker, E. Anal. Chem., 1998, 70, 5252-5258. DOI: 10.1021/ac980678l.
(43)   Selectivity of Liquid Membrane Cadmium Microelectrodes Based on the Ionophore N,N,N’,N’-Tetrabutyl-3,6-dioxaoctanedithioamide, Pineros, M.A.; Shaff, J.E.; Kochian, L.V.; Bakker, E. Electroanalysis, 1998, 10, 937-941. DOI: 10.1002/(SICI)1521-4109(199810)10:14<937::AID-ELAN937>3.0.CO;2-C.
(42)   Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores Applied in Potentiometric and Optical Sensors, Bühlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev., 1998, 98, 1593-1687. DOI: 10.1021/cr970113+.
(41)   Spectroscopic in-situ Imaging of Acid Coextraction Processes in Solvent Polymeric Ion-Selective Electrode and Optode Membranes, Lindner, E.; Zwickl, T.; Bakker, E.; Lan, B.T.T.; Toth, K.; Pretsch, E. Anal. Chem., 1998, 70, 1176-1181. DOI: 10.1021/ac970952w.
(40)   Influence of lipophilic inert electrolytes on the selectivity of polymer membrane electrodes, Nägele, M.; Mi, Y.; Bakker, E.; Pretsch, E. Anal. Chem., 1998, 70, 1686-1691. DOI: 10.1021/ac970903j.
(39)   Ion-Selective Electrodes Based on Two Competitive Ionophores for Determining Stability Constants of Ion–Carrier Complexes in Solvent Polymeric Membranes, Bakker, E.; Pretsch, E. Anal. Chem., 1998, 70, 295-302. DOI: 10.1021/ac970878h.
(38)   Effect of Transmembrane Electrolyte Diffusion on the Detection Limit of Carrier-Based Potentiometric Ion Sensors, Mathison, S.; Bakker, E. Anal. Chem., 1998, 70, 303-309. DOI: 10.1021/ac970690y.
(37)   Detection Limit of Polymer Membrane Ion-Selective Electrodes: Possible Chemical Origins and Prospects for Improvement, Mathison, S.; Goines, R.; Bakker, E. Electrochem Soc. Proc., 1997, 97-19, 646-654. DOI: .
(36)   Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics, Bakker, E.; Bühlmann, P.; Pretsch, E. Chem. Rev., 1997, 97, 3083-3132. DOI: 10.1021/cr940394a.
(35)   Selectivity of Carrier-Based Ion-Selective Electrodes: Is the Problem Solved?, Bakker, E. Trends Anal. Chem., 1997, 16, 252-260. DOI: 10.1016/S0165-9936(97)00024-1.
(34)   Potentiometric Determination of Effective Complex Formation Constants of Lipophilic Ion Carriers within Ion-Selective Electrode Membranes, Bakker, E.; Pretsch, E. J. Electrochem. Soc., 1997, 144, L125-L127. DOI: 10.1149/1.1837633.
(33)   Lipophilic Ionic Sites for Solvent Polymeric Membrane pH Electrodes Based on 4’,5’-Dibromofluorescein Octadecylester as Electrically Charged Carrier, Mi, Y.; Bakker, E. J. Electrochem. Soc., 1997, 144, L27-L28. DOI: 10.1149/1.1837421.
(32)   Selectivity Comparison of Neutral Carrier-Based Ion-Selective Optical and Potentiometric Sensing Schemes, Bakker, E. Anal. Chim. Acta, 1997, 350, 329-340. DOI: 10.1016/S0003-2670(97)00218-3.
(31)   Determination of Unbiased Selectivity Coefficients of Neutral Carrier-Based Cation-Selective Electrodes, Bakker, E. Anal. Chem., 1997, 69, 1061-1069. DOI: 10.1021/ac960891m.
(30)   Selectivity of Liquid Membrane Ion-Selective Electrodes, Bakker, E. Electroanalysis, 1997, 9, 7-12. DOI: 10.1002/elan.1140090103.
(29)   Origin of Anion Response of Solvent Polymeric Membrane Based Silver Ion-Selective Electrodes, Bakker, E. Sens. Actuators, B, 1996, 35, 20-25. DOI: 10.1016/S0925-4005(96)02007-2.
(28)   Determination of Improved Selectivity Coefficients of Polymer Membrane Ion-Selective Electrodes by Conditioning with a Discriminated Ion, Bakker, E. J. Electrochem. Soc., 1996, 143, L83-L85. DOI: 10.1149/1.1836608.
(27)   Miniature Sodium-Selective Optode with Fluorescent pH Chromoionophores and Tunable Dynamic Range, Shortreed, M.R.; Bakker, E.; Kopelman, R. Anal. Chem., 1996, 68, 2656-2662. DOI: 10.1021/ac960035a.
(26)   Influence of Nonionic Surfactants on the Potentiometric Response of Hydrogen Ion-Selective Polymeric Membrane Electrodes, Espadas-Torre, C.; Bakker, E.; Barker, S.; Meyerhoff, M.E. Anal. Chem., 1996, 68, 1623-1631. DOI: 10.1021/ac951017g.
(25)   Polyion-sensitive membrane electrodes for biomedical analysis, Meyerhoff, M.E.; Fu, B.; Bakker, E.; Yun, J.H.; Yang, V.C. Anal. Chem., 1996, 68, 168A-175A. DOI: 10.1021/ac9618536.
(24)   Potentiometric Polyion Sensors: A New Measurement Technology for Monitoring Blood Heparin Levels During Open Heart Surgery, Meyerhoff, M.E.; Yang, V.C.; Wahr, J.A.; Lee, L.; Yung, J.H.; Fu, B.; Bakker, E. Clin. Chem., 1995, 41, 1355-1355. DOI: 10.1093/clinchem/41.9.1355.
(23)   Polyion Sensitive Membrane Electrodes: Improbable Devices Capable of Monitoring Heparin Levels in Whole Blood, Meyerhoff, M.E.; Fu, B.; Ma, S.C.; Bakker, E.; Yung, J.H.; Yang, V.C. Blood Gas Electrolyte Newsletter, 1995, 10, 4-8. DOI: .
(22)   Extraction Thermodynamics of Polyanions into Plasticized Polymer Membranes Doped with Lipophilic Ion-Exchangers: A Potentiometric Study, Fu, B.; Bakker, E.; Yang, V.C. Macromolecules, 1995, 28, 5834-5840. DOI: 10.1021/ma00121a021.
(21)   Lipophilicity of Tetraphenylborate Derivatives as Anionic Sites in Neutral Carrier-Based Solvent Polymeric Membranes and Lifetime of Corresponding Ion-Selective Electrochemical and Optical Sensors, Bakker, E.; Pretsch, E. Anal. Chim. Acta, 1995, 309, 7-17. DOI: 10.1016/0003-2670(95)00077-D.
(20)   Polymer Membrane-Based Polyion Sensors: Development, Response Mechanism, and Bioanalytical Applications, Fu, B.; Bakker, E.; Wang, E.; Yun, J.H.; Yang, V.C.; Meyerhoff, M.E. Electroanalysis, 1995, 7, 823-829. DOI: 10.1002/elan.1140070907.
(19)   Applicability of the Phase Boundary Potential Model to the Mechanistic Understanding of Solvent Polymeric Membrane-Based Ion-Selective Electrodes, Bakker, E.; Nägele, M.; Schaller, U.; Pretsch, E. Electroanalysis, 1995, 7, 817-822. DOI: 10.1002/elan.1140070906.
(18)   Carrier Mechanism of Acidic Ionophores in Solvent Polymeric Membrane Ion-Selective Electrodes, Schaller, U.; Bakker, E.; Pretsch, E. Anal. Chem., 1995, 67, 3123-3132. DOI: 10.1021/ac00114a005.
(17)   Selectivity of Polymer-Membrane Based Ion-Selective Electrodes: Self-Consistent Model Describing the Potentiometric Response in Mixed Ion Solutions of Different Charge, Bakker, E.; Meruva, R.K.; Pretsch, E.; Meyerhoff, M.E. Anal. Chem., 1994, 66, 3021-3030. DOI: 10.1021/ac00091a600.
(16)   Optimum Composition of Neutral Carrier Based pH Electrodes, Bakker, E.; Xu, A.; Pretsch, E. Anal. Chim. Acta, 1994, 295, 253-262. DOI: 10.1016/0003-2670(94)80230-0.
(15)   Response Mechanism of Polymer Membrane-Based Potentiometric Polyion Sensors, Fu, B.; Bakker, E.; Meyerhoff, M.E.; Yun, J.H.; Yang, V.C. Anal. Chem., 1994, 66, 2250-2259. DOI: 10.1021/ac00086a009.
(14)   Nitrite-Selective Microelectrodes, Schaller, U.; Bakker, E.; Spichiger, U.E.; Pretsch, E. Talanta, 1994, 41, 1001-1005. DOI: 10.1016/0039-9140(94)E0048-V.
(13)   Anion-Selective Membrane Electrodes Based on Metalloporphyrins: The Influence of Anionic and Cationic Sites on Potentiometric Selectivity, Bakker, E.; Malinowska, E.; Schiller, R.D.; Meyerhoff, M.E. Talanta, 1994, 41, 881-890. DOI: 10.1016/0039-9140(94)E0041-O.
(12)   Ionic Sites for Charged Carrier-Based Ion-Selective Electrodes, Schaller, U.; Bakker, E.; Pretsch, E. ACH-Models in Chemistry, 1994, 131, 739-759. DOI: .
(11)   Determination of Complex Stability Constants of Cation-Selective Ionophores in Solvent Polymeric Membranes, Bakker, E.; Willer, M.; Lerchi, M.; Seiler, K.; Pretsch, E. Anal. Chem., 1994, 66, 516-521. DOI: 10.1021/ac00076a016.
(10)   Ionic Additives for Ion-Selective Electrodes Based on Electrically Charged Carriers, Schaller, U.; Bakker, E.; Spichiger, U.E.; Pretsch, E. Anal. Chem., 1994, 66, 391-398. DOI: 10.1021/ac00075a013.
(9)   Detection Limit of Ion-Selective Bulk Optodes and Corresponding Electrodes, Bakker, E.; Willer, M.; Pretsch, E. Anal. Chim. Acta, 1993, 282, 265-271. DOI: 10.1016/0003-2670(93)80210-C.
(8)   Lipophilic and Immobilized Anionic Additives in Solvent Polymeric Membranes of Cation-Selective Chemical Sensors, Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chim. Acta, 1993, 280, 197-208. DOI: 10.1016/0003-2670(93)85122-Z.
(7)   Synthesis and Characterization of Neutral Hydrogen Ion-Selective Chromoionophores for Use in Bulk Optodes, Bakker, E.; Lerchi, M.; Rosatzin, T.; Rusterholz, B.; Simon, W. Anal. Chim. Acta, 1993, 278, 211-225. DOI: 10.1016/0003-2670(93)85102-P.
(6)   Optodes in Clinical Chemistry: Potential and Limitations, Spichiger, U.E.; Freiner, D.; Bakker, E.; Rosatzin, T.; Simon, W. Sens. Actuators, B, 1993, 11, 263-271. DOI: 10.1016/0925-4005(93)85264-B.
(5)   Optical Sensors Based on Neutral Carriers, Spichiger, U.E.; Simon, W.; Bakker, E.; Lerchi, M.; Bühlmann, P.; Haug, J.-P.; Kuratli, M.; Osawa, S.; West, S. Sens. Actuators, B, 1993, 11, 1-8. DOI: 10.1016/0925-4005(93)85232-Y.
(4)   Chemically Selective Optode Membranes and Optical Detection Modes, Spichiger, U.E.; Freiner, D.; Lerchi, M.; Bakker, E.; Dohner, R.; Simon, W. SPIE, 1992, 1796, 371-382. DOI: .
(3)   Selectivity of Ion-Sensitive Bulk Optodes, Bakker, E.; Simon, W. Anal. Chem., 1992, 64, 1805-1812. DOI: 10.1021/ac00041a012.
(2)   Lead-Selective Bulk Optodes Based on Neutral Ionophores with Subnanomolar Detection Limits, Lerchi, M.; Bakker, E.; Rusterholz, R.; Simon, W. Anal. Chem., 1992, 64, 1534-1540. DOI: 10.1021/ac00038a007.
(1)   Characterization of Sodium-Selective Optode Membranes Based on Neutral Ionophores and Assay of Sodium in Plasma, Seiler, K.; Wang, K.; Bakker, E.; Morf, W.E.; Rusterholz, B.; Spichiger, U.E.; Simon, W. Clin. Chem., 1991, 37, 1350-1355. DOI: 10.1093/clinchem/37.8.1350.