Ph.D. 2018
Nadezda (Nadja) is a past Ph.D. student of the Bakker group who joined us from St. Petersburg State University in Russia. She realized potentiometric sensing arrays for aquatic analysis that were subsequently deployed on a Eawag platform on Lake Greifensee. She also studied how transmembrane fluxes and dynamic electrochemistry can be used to locally acidify the membrane surface for improved anion sensing and spent much time on studying possible ways to measure phosphate. She worked closely with the groups of Bernhard Wehrli and Francesco Pomati at Eawag as part of a SNSF Sinergia project.
After her Ph.D. she did a postdoc at HES-SO Sion and is currently employed as a Sensor Development Engineer at SenTec in Therwil near Basel, Switzerland. Linkedin.
Thesis title: Development of Sensing Principles for Electrochemical Detection of Nutrients and Species Relevant to the Carbon Cycle (2018). DOI Link
Publications:
(1)   In-Line Seawater Phosphate Detection with Ion-Exchange Membrane Reagent Delivery, Sateanchok, S.; Pankratova, N.; Cuartero, M.; Cherubini, T.; Grudpan, K.; Bakker, E. ACS Sensors, 2018, 3, 2455–2462. DOI: 10.1021/acssensors.8b01096 (open access).
(2)   Fast Potentiometric CO2 Sensor for High-resolution In situ Measurements in Fresh Water Systems, Athavale, R.; Pankratova, N.; Dinkel, C.; Bakker, E.; Wehrli, B.; Brand, A. Environ. Sci. Technol., 2018, 52, 11259-11266. DOI: 10.1021/acs.est.8b02969 (open access).
(3)   Ion-Exchange Microemulsions for Eliminating Dilute Interferences in Potentiometric Determinations, Apichai, S.; Wang, L.; Pankratova, N.; Grudpan, K.; Bakker, E. Electroanalysis, 2018, 30, 2462-2466. DOI: 10.1002/elan.201800366.
(4)   In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors, Cuartero, M.; Crespo, G.; Cherubini, T.; Pankratova, N.; Confalonieri, F.; Massa, F.; Tercier-Waeber, M.L.; Abdou, M.; Schäfer, J.; Bakker, E. Anal. Chem., 2018, 90, 4702–4710. DOI: 10.1021/acs.analchem.7b05299 (open access).
(5)   Fluorinated Tripodal Receptors for Potentiometric Chloride Detection in Biological Fluids, Pankratova, N.; Cuartero, M.; Jowett, L. A.; Howe, E. N.; Gale, P. A.; Bakker, E.; Crespo, G. A. Biosens. Bioelectron., 2018, 99, 70-76. DOI: 10.1016/j.bios.2017.07.001.
(6)   In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes, Cuartero, M.; Pankratova, N.; Crespo, G. A.; Cherubini, T.; Massa, F.; Confalonieri, F.; Bakker, E. Environ. Sci. Technol. Lett., 2017, 4, 410–415. DOI: 10.1021/acs.estlett.7b00388 (open access).
(7)   In-line Acidification for Potentiometric Sensing of Nitrite in Natural Waters, Pankratova, N.; Cuartero, M.; Crespo, G.; Bakker, E. Anal. Chem., 2017, 89, 571–575. DOI: 10.1021/acs.analchem.6b03946 (open access).
(8)   Local Acidification of the Membrane Surface for Potentiometric Measurements of Anions in Environmental Samples, Pankratova, N.; Ghahraman Afshar, M.; Yuan, D.; Crespo, G. A.; Bakker, E. ACS Sensors, 2016, 1, 48-54. DOI: 10.1021/acssensors.5b00015 (open access).
(9)   All-Solid-State Potentiometric Sensors with Multi-Walled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples, Yuan, D.; Anthis, A.; Ghahraman Afshar, M.; Pankratova, N.; Cuartero, M.; Crespo, G.; Bakker, E. Anal. Chem., 2015, 87, 8640–8645. DOI: 10.1021/acs.analchem.5b01941.
(10)   Potentiometric Sensing Array for Monitoring Aquatic Systems, Pankratova, N.; Jeanneret, S.; Tercier-Waeber, M. L.; Crespo, G.; Cherubini, T.; Crespi, M.; Pomati, F.; Bakker, E. Environ. Sci.: Processes Impacts, 2015, 17, 906 - 914. DOI: 10.1039/C5EM00038F.